《数字签名技术》PPT课件

《数字签名技术》PPT课件

ID:36877399

大小:297.26 KB

页数:35页

时间:2019-05-10

《数字签名技术》PPT课件_第1页
《数字签名技术》PPT课件_第2页
《数字签名技术》PPT课件_第3页
《数字签名技术》PPT课件_第4页
《数字签名技术》PPT课件_第5页
资源描述:

《《数字签名技术》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3数字签名技术3.1数字签名概述3.2常规数字签名方法3.3特殊数字签名方法3.4数字签名法律3.1数字签名概述对文件进行加密只解决了传送信息的保密问题。数字签名则用来解决源鉴别(认证性)、完整性、不可否认(不可抵赖)等问题。本节主要内容:3.1.1数字签名的基本概念3.1.2数字签名的特点3.1.3数字签名的原理3.1.4数字签名的作用3.1.1数字签名的基本概念数字签名是通过一个单向函数对要传送的信息进行处理得到的用以认证信息来源并核实信息在传送过程中是否发生变化的一个字母数字串。数字签名提供了对信息来源的确定并能检测信息是否被篡改。3.1.2数字签名的特

2、点在书面文件上签名是确认文件的一种手段,其作用有两点:第一,因为自己的签名难以否认,从而确认了文件已签署这一事实;第二,因为签名不易仿冒,从而确定了文件是真的这一事实。数字签名与书面文件签名有相同之处,采用数字签名,也能确认以下两点:第一,信息是由签名者发送的;第二,信息自签发后到收到为止未曾作过任何修改。区别:手签是模拟的,易伪造数字签名是基于数学原理的,更难伪造。3.1.3数字签名的原理处理过程:(采用双重加密)(1)使用SHA编码将发送文件加密产生128bit的数字摘要;(2)发送方用自己的专用密钥对摘要再加密,形成数字签名;(3)将原文和加密的摘要同时

3、传给对方;(4)接受方用发送方的公共密钥对摘要解密,同时对收到的文件用SHA编码加密产生同一摘要;(5)将解密后的摘要和收到的文件在接受方重新加密产生的摘要相互对比,如果两者一致,则说明在传送过程中信息没有破坏和篡改。否则,则说明信息已经失去安全性和保密性。3.1.4数字签名的作用能证明:信息是由签名者发送的(认证性)信息自签发后到收到为止未曾做过任何修改(完整性)发送者不能否认其发送过信息及信息的内容(不可否认性)可防止发送者或接收者伪造第三方冒充接收方篡改3.2常规数字签名方法3.2.1RSA数字签名系统3.2.2Hash签名3.2.3美国数字签名标准(D

4、SA)3.2.4椭圆曲线数字签名算法(ECDSA)3.2.1RSA数字签名系统RSA算法中数字签名技术实际上是通过一个哈希函数来实现的。数字签名的特点是它代表了文件的特征,文件如果发生改变,数字签名的值也将发生变化。不同的文件将得到不同的数字签名。用RSA或其它公开密钥密码算法的最大方便是没有密钥分配问题。因为公开密钥加密使用两个不同的密钥,其中有一个是公开的,另一个是保密的。公开密钥可以保存在系统目录内、未加密的电子邮件信息中、电话黄页(商业电话)上或公告牌里,网上的任何用户都可获得公开密钥。3.2.2Hash签名Hash签名是最主要的数字签名方法,也称之为

5、数字摘要法(DigitalDigest)或数字指纹法(DigitalFingerPrint)。它与RSA数字签名是单独的签名不同,该数字签名方法是将数字签名与要发送的信息紧密联系在一起,它更适合于电子商务活动。将一个商务合同的个体内容与签名结合在一起,比合同和签名分开传递,更增加了可信度和安全性。一个Hash函数满足:①H可以作用于一个任意长度的数据块;②H产生一个固定长度的输出;③H(x)对任意给定的x计算相对容易,无论是软件还是硬件实现;④对任意给定码h,找到x满足H(x)=h具有计算不可行性;⑤对任意给定的数据块x,找到满足H(y)=H(x)的yx具有

6、计算不可行性;⑥找到任意数据对(x,y),满足H(x)=H(y)是计算不可行的。用Hash函数实验签名的方案如下:发送方X:准备消息M,计算其散列码H(M),用X的私钥对散列值构成签名Kx-1[H(M)],并将消息M及签名Kx-1[H(M)]发送给Y接收方Y:对收到的消息M′计算用H(M′),利用公钥解密Kx-1[H(M)],然后比较Kx[Kx-1[H(M)]]和H(M′),如果Kx[Kx-1[H(M)]]=H(M′),则签名得到验证。3.2.3美国数字签名标准(DSA)数字签名算法(DigitalSignatureAlgorithm,DSA)是Schnorr

7、和ElGamal签名算法的变种,由美国国家标准化技术研究院(NIST)和国家安全局共同开发。DSA是基于离散对数的难度。一、DSA算法参数说明DSA算法中应用了下述参数:p:Lbits长的素数。L是64的倍数,范围是512到1024;q:p-1的160bits的素因子;g:g=hp-1modp,h满足h1;x:1

8、应用中,使用公共模数可能会带来一定的威

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。