基于某MATLAB地汽车减震系统仿真建模

基于某MATLAB地汽车减震系统仿真建模

ID:36741636

大小:264.09 KB

页数:12页

时间:2019-05-14

基于某MATLAB地汽车减震系统仿真建模_第1页
基于某MATLAB地汽车减震系统仿真建模_第2页
基于某MATLAB地汽车减震系统仿真建模_第3页
基于某MATLAB地汽车减震系统仿真建模_第4页
基于某MATLAB地汽车减震系统仿真建模_第5页
资源描述:

《基于某MATLAB地汽车减震系统仿真建模》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、实用标准问题描述及空间状态表达式的建立1.1问题描述汽车减震系统主要用来解决路面不平而给车身带来的冲击,加速车架与车身振动的衰减,以改善汽车的行驶平稳性。如果把发动机比喻为汽车的“心脏”,变速器为汽车的“中枢神经”,那么底盘及悬挂减震系统就是汽车的“骨骼骨架”。减震系统不仅决定了一辆汽车的舒适性与操控性同时对车辆的安全性起到很大的决定作用,随着人们对舒适度要求的不断提高,减震系统的性能已经成为衡量汽车质量及档次的重要指标之一。图1.悬架减震系统模型汽车减震系统的目的是为了减小路面的颠簸,为人提供平稳、舒适的感觉。图2

2、,是一个简单的减震装置的原理图。它由一个弹簧和一个减震器组成。从减震的角度看,可将公路路面看作是两部分叠加的结果:一部分是路面的不平行度,在汽车的行驶过程中,它在高度上有一些快速的小幅度变化,相当于高频分量;另一部分是整个地形的坡度,在汽车的行驶过程中,地形的坡度有一个缓慢的高度变化,相当于低频分量。减震系统的作用就是要在汽车的行驶过程中减小路面不平所引起的波动。因此,可以将减震系统看成是一个低通滤波器。文案大全实用标准图2.减震系统原理图1.2空间状态表达式的建立对该系统进行受力分析得出制约底盘运动的微分方程(数学

3、模型)是:其中,M为汽车底盘的承重质量,k为弹簧的弹性系数,b为阻尼器的阻尼系数。将其转化为系统传递函数:其中,为无阻尼固有频率,为阻尼系数。并且,通过查阅相关资料,我们知道,汽车减震系统阻尼系数=0.2~0.4,而我们希望越大越好。在下面的计算中,我们规定=6,=0.2。所以,系统传递函数,可以转化为:根据现代控制理论知识,结合MATLAB工具,将传递函数转化为状态空间矩阵和输出矩阵表示。在MATLAB中输入,能够得到:。文案大全实用标准进而,通过现代控制理论,可以将系统状态变量图绘制出来。图3.系统状态变量图2.

4、应用MATLAB分析控制系统性能2.1系统可控性与可观测性分析可控性和可观测性,深刻地揭示了系统的内部结构关系,由R.E.Kalman于60年代初首先提出并研究的这两个重要概念,在现代控制理论的研究与实践中,具有极其重要的意义,事实上,可控性与可观测性通常决定了最优控制问题解的存在性。我们借助MATLAB工具来实现系统可控性与可观测性分析。程序代码如下:输出结果如下:通过现代控制理论知识,可以得出结论:系统是可控可观测的。文案大全实用标准2.2系统稳定性分析在经典控制理论中,如果在输入量的作用下系统的输出量能够达到一

5、个新的平衡状态或扰动量去掉以后系统的输出量能够恢复到原来的平衡状态,则系统是稳定的。控制系统的稳定性分析是系统分析的重要组成部分。系统稳定是控制系统正常工作的前提条件。根据李雅普诺夫第一法,若线性化方程中系数矩阵A的所有特征值都具有负实部,则系统总是渐近稳定的。在MATLAB中输入如下代码:我们可以得到,系统极点为:可以看出,系统的极点均在虚轴负半轴,由李氏第一法可得,系统是稳定的。通过MATLAB软件,可以得到输入输出的阶跃响应曲线。输入代码如下:文案大全实用标准输出曲线如图4,图5。图4.系统输入的阶跃响应曲线文

6、案大全实用标准图5.系统输出的阶跃响应曲线3.应用MATLAB进行控制系统综合设计3.1极点配置所谓极点配置就是利用状态反馈或输出反馈使闭环系统的极点位于所希望的位置。通过上面的分析,可知系统要反应5秒才能达到稳定。这在实际中是不能够满足的,需要进行状态反馈,进行极点配置,以实现对系统的调整,使其达到稳定的时间更短,反应速度更快。通过查询有关资料,得到了系统极点方程:这次,我们设定=0.4,=10。得到希望极点:。为了是计算简单,将极点进行四舍五入:。然后,使用MATLAB进行极点配置,编写如下代码:运行后,可以得到

7、状态反馈矩阵K=[5.661],进而可以计算出极点配置后状态反馈系统的状态方程:状态反馈系统传递函数为:状态反馈系统方框图为图6所示。文案大全实用标准图6.状态反馈系统方框图下面进行系统性能的仿真分析,验证是否经过极点配置后,系统能够满足快速响应的使用要求。采用MATLAB中的simulink模块,对系统进行仿真分析。原系统(极点配置前)在输入阶跃信号时,系统输出响应曲线如图7所示。图7.(极点配置前)系统输出响应曲线状态反馈系统(极点配置后)在输入阶跃信号时,系统输出响应曲线如图8所示。文案大全实用标准图8.(极点

8、配置后)系统输出响应曲线通过观察,可以看出:极点配置前,系统在5秒左右达到稳定;极点配置后,系统在2.5秒左右达到稳定。因此,极点配置能够使系统性能更优,响应时间更快。3.2系统的最优控制上面对系统进行了极点配置和状态反馈,使得系统的性能得到了一定的改善。但是,系统还远远没有达到最优的状态。最优控制问题,就是从可供选择的容许控制集合U中,寻找一

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。