ProE模流分析教程4

ProE模流分析教程4

ID:36738697

大小:174.00 KB

页数:13页

时间:2019-05-14

ProE模流分析教程4_第1页
ProE模流分析教程4_第2页
ProE模流分析教程4_第3页
ProE模流分析教程4_第4页
ProE模流分析教程4_第5页
资源描述:

《ProE模流分析教程4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、【国立勤益技术学院CAE实验室】讲义《模流分析基础入门》  谢庆雄博士编着@版权所有允许下载、复制、打印,但禁止贩售或用于商业用途http://www.quarx.com.tw/第四章塑料如何流动?熔融的热塑性塑料呈现黏弹性行为(viscoelasticbehavior),亦即黏性流体与弹性固体的流动特性组合。当黏性流体流动时,部分驱动能量将会转变成黏滞热而消失;然而,弹性固体变形时,会将推动变形的能量储存起来。日常生活中,水的流动就是典型的黏性流体,橡胶的变形属于弹性体。除了这两种的材料流动行为,还有剪切和拉伸两种流动变形,如图4-1(a)与(b

2、)。在射出成形的充填阶段,热塑性塑料之熔胶的流动以剪切流动为主,如图4-1(c)所示,材料的每一层元素之间具有相对滑动。另外,当熔胶流经一个尺寸突然变化的区域,如图4-1(d),拉伸流动就变得重要多了。图4-1(a)剪切流动;(b)拉伸流动;(c)模穴内的剪切流动(d)充填模穴内的拉伸流动热塑性塑料承受应力时会结合理想黏性流体和理想弹性固体之特性,呈现黏弹性行为。在特定的条件下,熔胶像液体一样受剪应力作用而连续变形;然而,一旦应力解除,熔胶会像弹性固体一样恢复原形,如图4-2(b)与(c)所示。此黏弹性行为是因为聚合物在熔融状态,分子量呈现杂乱卷曲

3、型态,当受到外力作用时,将允许分子链移动或滑动。然而,相互纠缠的聚合物分子链使系统于施加外力或解除外力时表现出弹性固体般的行为。譬如说,在解除应力后,分子链会承受一恢复应力,使分子链回到杂乱卷曲的平衡状态。因为聚合物系统内仍有分子链的交缠,此恢复应力可能不是立即发生作用。图4-2(a)理想的黏性液体在应力作用下表现出连续的变形;(b)理想的弹性固体承受外力会立刻变形,于外力解除后完全恢复原形;(c)热塑性塑料之熔胶就像液体一样,在剪切应力作用下而连续变形。然而,一旦应力解除,它就像弹性固体一般,部分变形会恢复原形。4-1熔胶剪切黏度熔胶剪切黏度(s

4、hearviscosity)是塑料抵抗剪切流动的阻力,它是剪切应力与剪变率的比值,参阅图4-3。。聚合物熔胶因长分子链接构而具有高黏度,通常的黏度范围介于2~3000Pa(水为10-1Pa,玻璃为1020Pa)。图4-3以简易之剪切流动说明聚合物熔胶黏度的定义水是典型的牛顿流体,牛顿流体的黏度与温度有关系,而与剪变率无关。但是,大多数聚合物熔胶属于非牛顿流体,其黏度不仅与温度有关,也与剪切应变率有关。  聚合物变形时,部份分子不再纠缠,分子链之间可以相互滑动,而且沿著作用力方向配向,结果,使得聚合物的流动阻力随着变形而降低,此称为剪变致稀行为(sh

5、earing-thinningbehavior),它表示聚合物承受高剪变率时黏度会降低,也提供了聚合物熔胶加工便利性。例如,以两倍压力推动开放管线内的水,水的流动速率也倍增。但是,以两倍压力推动开放管线内的聚合物熔胶,其流动速率可能根据使用材料而增加2~15倍。  介绍了剪切黏度的观念,再来看看射出成形时模穴内的剪变率分布。一般而言,材料的连接层之间的相对移动愈快,剪变率也愈高,所以,典型的熔胶流动速度曲线如图4-4(a),其在熔胶与模具的界面处具有最高的剪变率;或者,假如有聚合物凝固层,在固体与液体界面处具有最高的剪变率。另一方面,在塑件中心层因

6、为对称性流动,使得材料之间的相对移动趋近于零,剪变率也接近零,如图4-4(b)所示。剪变率是一项重要的流动参数,因为它会影响熔胶黏度和剪切热(黏滞热)的大小。射出成形制程的典型熔胶剪变范围在102~1051/s之间。图4-4(a)相对流动元素间运动之典型速度分布曲线;(b)射出成形之充填阶段的剪变率分布图。聚合物分子链的运动能力随着温度升高而提高,如图4-5所示,随着剪变率升高与温度升高,熔胶黏度会降低,而分子链运动能力的提升会促进较规则的分子链排列及降低分子链相互纠缠程度。此外,熔胶黏度也与压力相关,压力愈大,熔胶愈黏。材料的流变性质将剪切黏度表

7、示为剪变率、温度与压力的函数。图4-5聚合物黏度与剪变率、温度、及压力的关系4-2熔胶流动之驱动--射出压力射出机的射出压力是克服熔胶流动阻力的驱动力。射出压力推动熔胶进入模穴以进行充填和保压,熔胶从高压区流向低压区,就如同水从高处往低处流动。在射出阶段,于喷嘴蓄积高压力以克服聚合物熔胶的流动阻力,压力沿着流动长度向聚合物熔胶波前逐渐降低。假如模穴有良好的排气,则最终会在熔胶波前处达到大气压力。压力分布如图4-6所示。图4-6压力沿着熔胶输送系统和模穴而降低模穴入口的压力愈高,导致愈高的压力梯度(单位流动长度之压力降)。熔胶流动长度加长,就必须提高

8、入口压力以产生相同的压力梯度,以维持聚合物熔胶速度,如图4-7所示。图4-7熔胶速度与压力梯度的关系  根据古典流体力学的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。