基于电子商务的个性化体育营销推荐系统研究

基于电子商务的个性化体育营销推荐系统研究

ID:36457770

大小:64.68 KB

页数:6页

时间:2019-05-10

基于电子商务的个性化体育营销推荐系统研究_第1页
基于电子商务的个性化体育营销推荐系统研究_第2页
基于电子商务的个性化体育营销推荐系统研究_第3页
基于电子商务的个性化体育营销推荐系统研究_第4页
基于电子商务的个性化体育营销推荐系统研究_第5页
资源描述:

《基于电子商务的个性化体育营销推荐系统研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、基于电子商务的个性化体育营销推荐系统研究[摘要]分析了电子商务个性化推荐系统的发展现状及存在的主要问题,提出了一种采用“企业对个人”运营模式的个性化体育营销推荐系统,给出了该系统的模块、体系结构及实现策略,为企业实施体育产品营销提供借鉴和指导。  [关键词]电子商务体育营销个性化推荐系统    近年来,电子商务的快速发展极大地改变了传统的贸易模式,为企业和消费者提供了一个相互交流的便捷平台。本文旨在提出一个适合于体育营销的个性化推荐模式,以期使电子商务能广泛、高效地为发展体育事业服务。  一、国内电子商务个性化推荐系统的现状

2、  目前个性化推荐已开始在国内电子商务领域初现端倪,PC零售业的巨头——Dell公司正是通过提供个性化推荐在电子商务活动中获得了巨大的成功。然而,在电子商务推荐系统的应用方面,国内电子商务网站与国外网站相比差距还较大,主要表现在:  1.缺乏个性化的推荐:由于很多推荐笼统地粗放地面向所有用户,而非个性化的推荐,其结果与每一用户的特殊兴趣并不相符合,这是我国电子商务推荐系统最主要的缺陷。  2.推荐的自动化程度低:6大多数的推荐功能都需要用户经过一段时间与计算机进行交互,输入自己感兴趣的信息,然后才能得到结果。并且,系统不能保

3、存用户每次输入的信息。总体来说,所有的推荐策略都基本上停留在查找这一层次上,不能实现自动推荐。  3.推荐的持久性程度低:目前大多数的推荐策略都是建立在当前用户会话的基础上,不能利用用户以前的会话信息,因而推荐的持久性程度非常低。这也是国内推荐系统的不足之处。  4.推荐策略单一:大多数推荐系统所用的推荐策略基本上就是分类浏览和基于内容的检索,缺乏多种推荐策略的结合使用,尤其缺少个性化与非个性化推荐策略的混合使用。  产生以上问题的主要原因,首先是消费者对电子商务不信任的社会心理还比较普遍,不愿提供真实的个人信息。其次,是现

4、实生活中电子商务个性化推荐不到位,管理制度不完善,无法达到消费者要求的水平,建立提供电子商务个性化推荐的网络系统的技术也欠发达。  二、电子商务个性化推荐系统及其分类  电子商务个性化推荐系统(PersonalizedRecommendationSystemsforE-Commerce)的正式定义由Resnick&Varian在1997年给出:“电子商务个性化推荐系统是利用电子商务网站向用户提供产品信息和相关建议,帮助用户决定购买什么产品,通过模拟销售人员帮助用户完成购物过程的系统”。这个定义现在已被广泛引用,推荐系

5、统的使用者是用户(电子商务活动中的用户)(user),推荐的对象是项目(item)。项目是推荐系统提供给用户的产品或推荐,也即最终的推荐内容。6  根据推荐对象的特点,目前存在的推荐系统可以大致分为两类:一类是以网页为主要推荐对象的推荐系统,它主要采用Web数据挖掘,尤其是使用Web日志挖掘的方法来分析用户的兴趣,向用户推荐符合其兴趣爱好的网页链接。另一类推荐系统的推荐对象主要是产品,这种系统主要在电子商务网络购物环境中使用,帮助用户找出他真正想要的产品。  三、电子商务个性化推荐系统模块  1.输入模块(Input):主要

6、负责对用户信息的收集和更新。输入来源按时间划分,可分为用户当前行为输入和用户访问过程中的历史行为输入;也可以分为个人输入和群体输入两部分。输入形式主要包括:用户注册信息输入、隐式浏览输入、关键字输入、编辑推荐输入、用户购买历史输入等等。  2.推荐方法模块(Recommendationmethod)是整个推荐系统的核心部分,它直接决定着推荐系统的性能优劣。推荐方法模块是以推荐技术和推荐算法为技术支撑。  3.输出模块(Output)负责将推荐结果输出给用户。输出形式主要包括相关产品输出、个体评分输出、相关推荐输出等。  四、

7、电子商务个性化推荐系统的体系结构  与传统的网站系统相比,个性化的电子商务系统有一个很大不同之处:个性化的电子商务网站一般都没有静态页面,这是由HTTP协议的“无状态性”所决定的。浏览器与Web推荐器之间的一个交互过程如图1所示。6  从上图可见,客户机浏览器与Web推荐器之间采用TCP连接,并且该连接状态在此次连接过程中尚能保持。但是,Web推荐器在发送给客户机应答信息后,便“遗忘”了此次交互,无论Web推荐器和客户端浏览器都不会记忆上一次连接的状态。目前,解决这个问题的方法一般有两种:  1.使用Cookie。Cooki

8、e是存储在Web客户端机器上的一个小文本文件。Web推荐器端的处理程序可以创建一个Cookie,然后让推荐器把该信息发送给客户端的浏览器。浏览器收到信息后即把数据存储在客户端的硬盘上。以后,当该客户再次访问该站点时,推荐器的处理程序向客户机的浏览器请求该Cookie。通过Cookie,可以

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。