线性代数---特殊行列式与行列式计算方法总结

线性代数---特殊行列式与行列式计算方法总结

ID:34692802

大小:171.00 KB

页数:8页

时间:2019-03-09

线性代数---特殊行列式与行列式计算方法总结_第1页
线性代数---特殊行列式与行列式计算方法总结_第2页
线性代数---特殊行列式与行列式计算方法总结_第3页
线性代数---特殊行列式与行列式计算方法总结_第4页
线性代数---特殊行列式与行列式计算方法总结_第5页
资源描述:

《线性代数---特殊行列式与行列式计算方法总结》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、特殊行列式及行列式计算方法总结一、几类特殊行列式1.上(下)三角行列式、对角行列式(教材P7例5、例6)2.以副对角线为标准的行列式3.分块行列式(教材P14例10)一般化结果:4.范德蒙行列式(教材P18例12)注:4种特殊行列式的结果需牢记!以下几种行列式的特殊解法必须熟练掌握!!!二、低阶行列式计算二阶、三阶行列式——对角线法则(教材P2、P3)三、高阶行列式的计算【五种解题方法】1)利用行列式定义直接计算特殊行列式;2)利用行列式的性质将高阶行列式化成已知结果的特殊行列式;3)利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行

2、计算——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算;4)递推法或数学归纳法;5)升阶法(又称加边法)【常见的化简行列式的方法】1.利用行列式定义直接计算特殊行列式例1(2001年考研题)分析:该行列式的特点是每行每列只有一个元素,因此很容易联想到直接利用行列式定义进行计算。解法一:定义法解法二:行列式性质法利用行列式性质2把最后一行依次与第n-1,n-2,…,2,1行交换(这里n=2001),即进行2000次换行以后,变成副对角行列式。解法三:分块法利用分块行列式的结果可以得到解法四:降阶定理展开按照每一行分别

3、逐次展开,此处不再详细计算。1.利用行列式的性质将高阶行列式化成已知结果的特殊行列式例2分析:该行列式的特点是1很多,可以通过和来将行列式中的很多1化成0.解:例3,分析:该类行列式特点是每行的次数递减,的次数增加。特点与范德蒙行列式相似,因此可以利用行列式的性质将D化成范德蒙行列式。解:练习:(11-12年IT专业期末考试题)若实数各不相等,则矩阵的行列式__________1.利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算例4分析:该行列式特点是处于主对角线,在后的一个位置,最后一行中是第一个元素,是最后一个元素。解:按第

4、一列展开:练习:(11-12年期中考试题)1.行(列)和相等的行列式例5分析:该行列式的特点是主对角线上元素为,其余位置上都是。可将第2,3,…,n列加到第1列上。(类似题型:教材P12例8,P278(2))解:2.箭头形(爪行)行列式例6分析:该类行列式特点是第一行、第一列及主对角上元素不为0,其余位置都为0.解此类行列式方法,是将行列式化成上三角行列式。解:分别从第2,3,…,n列提出因子2,3,…,n,然后将第2,3,…,n列分别乘以-1,再加到第1列上。注:爪形行列式非常重要,很多看似复杂的行列式通过简单变化以后都可以化成爪形行列式进行计

5、算!练习:1)教材习题P28:8(6)2)(11-12年期末考试题)3)(11-12年IT期末考试题)例7分析:该类行列式特点是每一行只有主对角线上的元素与第一个元素不同。解:1.递推法或数学归纳法该方法用于行列式结构具有一定的对称性,教材P15例11就是递推法的经典例题。利用同样的方法可以计算教材P278(4)。2.升阶法通常计算行列式都采用降阶的方法,是行列式从高阶降到低阶,但是对于某些行列式,可以通过加上一行或一列使得行列式变成特殊行列式,再进行计算。例8(教材P288(6)),分析:该题有很多解法,这里重点介绍升阶法。因为行列式中有很多1

6、,因此可以增加一行1,使得行列式变成比较特殊或者好处理的行列式。注意:行列式是方形的,因此在增加一行以后还要增加一列,以保持行列式的形状。为了使行列式的值不改变,因此增加的列为1,0,0,…,0.例9(教材P276(4))分析:此行列式可以应用性质6将行列式化为上三角行列式,也可以对比范德蒙行列式的形式,通过添加一行和一列把行列式变成范德蒙行列式以后再进行计算。解法一:解法二:的系数是,因此D等于的系数的相反数,由此可计算得到结果。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。