欢迎来到天天文库
浏览记录
ID:34661804
大小:1.13 MB
页数:121页
时间:2019-03-08
《电力系统负荷区间预测》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、摘要电力系统负荷预测是电力系统规划、计划、营销、市场交易、调度等部门的重要依据,其重要性早已被人们所认识。长期以来,国内外学者和电力系统运行管理专家不断探索,形成了一系列行之有效的预测方法。但分析现有的负荷预测方法发现,大量方法所得到的都是确定性的负荷预测结果。实际上,由于电力系统中蕴含了各种不确定因素,使得决策工作必然面临一定程度的风险,所以在决策时必须考虑电力需求的不确定性。传统确定性预测方法的结果不能反映需求的不确定性,而区间预测可满足这种客观要求。区间预测的结果不是一个简单的确定性数值,而是一个区间,并且这个区间对应了一定水平的概率
2、置信水平,能描述未来预测结果的可能范围。根据区间预测结果,电力系统决策人员在进行生产计划、系统安全分析等工作时能够更好地认识到未来负荷可能存在的不确定性和面临的风险因素,从而及时作出更为合理的决策。因此,分析电力系统负荷的变化规律,研究电力负荷区间预测方法,实现电力负荷的不确定性预测具有重要的理论意义和实用价值。本文通过对中长期电力负荷与短期电力负荷的特性分析,识别负荷自身变化以及相关因素的影响规律,采用灰色系统理论、神经网络模型和混沌时间序列方法,对电力负荷区间预测的模型与方法进行了研究。通过实例验证,区间预测结果具有较好的精度,证明了区
3、间预测算法的有效性,研究成果可应用于电力市场分析与预测系统中,为电力系统运行管理提供科学的决策依据。主要研究工作和创新性成果如下:(1)对于中长期电力负荷预测,针对传统灰色模型GM(1,1)在预测非指数型发展序列时存在误差过大的缺陷,将非线性灰色Bernoulli模型应用于负荷预测中,并提出了基于粒子群优化的参数优选方法。通过不同发展规律序列的测试数据以及实际电网负荷数据的预测结果表明,非线性灰色Bernoulli模型在适应性与预测精度等方面,较传统的GM(1,1)模型与灰色Verhulst模型有不同程度的改善。为进行区间预测,针对中长期负
4、荷预测存在影响因素较多的特点,采用线性回归模型;而考虑到缺少相关因素历史数据的问题,则建立了一元线性回归与灰色模型相结合的组合预测模型。通过福建省年度用电量的预测结果表明,组合预测方法是非常有效的。(2)分析天气等因素对短期负荷变化的影响规律,针对传统模糊聚类分析方法在处理温度等天气变量时转化为确定值存在信息丢失的问题,引入基于区间值的模I糊聚类处理方法。区间值模糊聚类方法用区间值表示各个对象对于每个因素的隶属度,在区间层次上求各个对象之间的相似度,最终获得聚类结果。根据区间模糊聚类结果选择学习样本,采用区间运算反向传播(IABP)学习算法
5、,建立了负荷预测的IABP神经网络模型。该模型充分发挥了区间运算和模糊理论处理不确定性问题的能力以及神经网络处理非线性问题的优势,可用区间变量作为输入,网络输出作为区间预测结果,给出了未来负荷的变化范围。(3)根据非线性动力系统理论进行负荷建模和预测,将预测精度作为辨识工具,识别电力负荷自身变化的动力特性。研究结果表明,负荷的变化特性可以描述为低维混沌系统。针对负荷的混沌特性及向前一步预测的精度提出了一种优选相空间重构参数的方法,并采用加权一阶局域法多步预测模型进行了负荷预测。通过相空间重构能识别负荷序列的内部特性并进行预测,因此相空间重构
6、是分析和预测负荷的有效工具。(4)根据短期电力负荷变化的混沌特性,同时避免确定性混沌预测方法中存在着如嵌入维数、延迟时间及相似数据提取方法等一些未定因素带来的误差,从区间预测的角度提出了一种电力负荷混沌区间预测方法。该方法首先进行相空间重构,采用聚类算法在相空间中寻找当前时刻相点的相似状态,根据不同相似状态的预测结果确定未来负荷的取值区间,并根据历史预测误差的统计规律计算预测区间对应的概率置信水平。采用北方某电网负荷数据进行了实验研究,验证了该方法的可行性与有效性。(5)概率性预测可以建立任意置信水平的区间预测结果,本文在混沌负荷序列确定性
7、预测结果的基础上,基于局部预测方差,提出了一种短期负荷概率性预测的混沌时间序列方法。首先通过混沌时间序列预测方法得到不同相似状态的确定性预测结果,进一步计算局部预测方差,并由分位数估计得到历史预测误差样本分布规律。根据局部预测方差与分位数估计,结合确定性预测结果构造预测区间,得到概率性预测结果。关键词:负荷预测,区间预测,概率性预测,灰色模型,粒子群优化,神经网络,模糊聚类,混沌时间序列IIAbstractIt’sbeenlong-termlyrecognizedthatpowerloadforecastingisimportantform
8、anypowersystemdepartmentssuchasdesigning,planning,programming,marketing,trading,schedulin
此文档下载收益归作者所有