基于CC2530的温室无线采集与控制系统设计与实现

基于CC2530的温室无线采集与控制系统设计与实现

ID:33854893

大小:207.75 KB

页数:9页

时间:2019-03-01

基于CC2530的温室无线采集与控制系统设计与实现_第1页
基于CC2530的温室无线采集与控制系统设计与实现_第2页
基于CC2530的温室无线采集与控制系统设计与实现_第3页
基于CC2530的温室无线采集与控制系统设计与实现_第4页
基于CC2530的温室无线采集与控制系统设计与实现_第5页
资源描述:

《基于CC2530的温室无线采集与控制系统设计与实现》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、基于CC2530的温室无线采集与控制系统设计与实现[导读]为实现温室的无线数据采集和无线控制,设计了一套基于CC2530的温室无线采集与控制系统,通过无线网络采集温室温湿度数据,并实现调节设备的无线控制。介绍了CC2530及无线传感器网络知识,给出了系统的软、硬件结构设计及数据存储、处理方法。试验结果表明,该系统实现了温室的无线采集与控制,有效节省了布线和人力成本,为现代温室的无线化、智能化提供了参考。0引言农业是国家发展的基础。中国是农业大国,却不是农业强国,大力发展温室农业是提高我国农业水平的重要途径。温室作为现代农业的重要组成部分,使

2、农业生产可以不受气候、地域的限制,大大地提高了作物产出。目前,我国温室的智能化和信息化水平仍十分落后。采集和控制是现代温室的两个基本构成,目前温室的采集和控制大多采用线缆传输,当传感器和控制设备较多时,线路杂乱,施工难度大、成本高,维护升级困难,而且温室的高温度、高湿度、酸性环境极易造成线路腐蚀老化,影响系统的可靠性和安全性。针对这些问题,本文设计了基于CC2530的温室无线采集与控制系统,该系统不仅实现了温室多点数据的实时采集和无线上传,而且实现了设备控制的无线化和自动化,系统运行过程中几乎不需要人的参与,具有很高的应用价值。1系统总体设

3、计系统结构如图1所示。通过若干分布在温室中的传感器节点采集数据,无线发送至中心节点,中心节点汇集各采集节点的传感数据并上传到监控计算机,监控计算机进行数据处理、显示和存储,根据数据处理结果下达控制命令,并经由中心节点无线发送给控制设备,实现采集与控制的自动化和无线化。2硬件设计2.1主控芯片系统采用CC2530无线SOC作为主芯片,它将微处理器和无线射频模块集成到一块芯片上,是TI公司推出的新一代ZigBee解决方案。CC2530的微处理器核心为一款增强型8051单片机,配有8KB的SRAM内存和32/64/128/256KB容量可选的fl

4、ash闪存,时钟频率达到32MHz,能满足不同应用对数据处理的要求,休眠时自动切换到32KHz低频模式,最大限度地降低能耗:无线射频模块的核心是CC2520芯片,工作在ISM免许可认证频段2.4GHz,采用DSSS扩频技术,具有出色的接收灵敏度(-98dm)和链路预算(103dB),最大传输速率250Kbps,完全符合IEEE802.15.4协议标准。2.2传感器节点本系统选用DHT11温室两用型数字传感器,该传感器为单总线数字信号输出,工作电压3.3~5.5V,温度测量范围0~50℃,精度±2℃,湿度测量范围20~90%RH,精度±5%R

5、H。图2是DHT11的电路连接图。DHT11通过一根数据线与CC2530模块相连接,构成采集模块,一次读取结束后,温度和湿度数据在数据线上按位传输、图3为传感器节点框架图。2.3控制节点由于气候多变,温室经常由于恶劣天气等原因而不得不关闭窗户,此时室内空气不流通,受温室覆盖材料散热等原因影响,室内温度、湿度等重要的环境因子会分布不均,直接影响作物生长的均匀性,因此有必要采取室内循环通风措施,使室内气候均匀、稳定。本系统的控制对象为温室内循环通风用的风机,风机型号CBF-400防爆型轴流风机,风量2880m3/h,功率0.37kW,试验温室面

6、积为10*8m2,采用两台这样的风机能很好地满足要求。该风机工作电压220V/AC,采用直流继电器驱动,为提高驱动能力和抗干扰能力,增加了功率放大器和光耦隔离器件。CC2530主控板通过一个I/O引脚控制直流继电器,从而控制风机启、停。图4为控制节点框架图。3软件设计3.1节点程序设计3.1.1网络协议目前常用的短距离无线通信协议有ZigBee、Bluetooth、Wi—Fi、UWB等,其中ZigBee以其低功耗、低速率、大网络容量、动态组网、高安全性等特点成为无线传感器网络的最佳选择。ZigBee定义了网络层和应用层规范,物理层和介质访问

7、控制层(MAC)基于IEEE802.15.4协议标准。ZigBee网络有三种拓扑形式:星型、树型、网状,其结构如图5所示。星型网络和树型网络不能改变网络拓扑,适合于不需要移动的场合。网状网络中节点能自由地与周围的节点通信,网络拓扑可动态调整,能够满足高移动性的要求,而且网络扩展十分方便。本系统网络规模虽然不大,但为方便移动和后期扩展,采用网状网络拓扑结构。3.1.2程序结构节点的程序基于TI公司的Z-Stack协议栈,它引入了操作系统抽象层OSAL(OperatingSystemAbstractionLayer)机制来处理多任务。OSAL按

8、优先级从高到低的顺序轮询物理层、MAC层、网络层、应用层是否有任务要执行。若有高优先级任务,立即跳转进入该任务处理子程序,处理结束后再次从最高优先级开始新一轮查询;若查询结束发现

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。