中考数学复习专题精品导学案:第12讲一次函数含答案详解.doc

中考数学复习专题精品导学案:第12讲一次函数含答案详解.doc

ID:31810791

大小:464.50 KB

页数:23页

时间:2019-01-18

中考数学复习专题精品导学案:第12讲一次函数含答案详解.doc_第1页
中考数学复习专题精品导学案:第12讲一次函数含答案详解.doc_第2页
中考数学复习专题精品导学案:第12讲一次函数含答案详解.doc_第3页
中考数学复习专题精品导学案:第12讲一次函数含答案详解.doc_第4页
中考数学复习专题精品导学案:第12讲一次函数含答案详解.doc_第5页
资源描述:

《中考数学复习专题精品导学案:第12讲一次函数含答案详解.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、2013年中考数学专题复习第十二讲:一次函数【基础知识回顾】一、一次函数的定义:一般的:如果y=()即y叫x的一次函数特别的:当b=时,一次函数就变为y-kx(k≠0),这时y叫x的【名师提醒:正比例函数是一次函数,反之不一定成立,是有当b=0时,它才是正比例函数】二、一次函数的同象及性质:1、一次函数y=kx+b的同象是经过点(0,b)(-,0)的一条正比例函数y=kx的同象是经过点和的一条直线【名师提醒:同为一次函数的同象是一条直线,所以函数同象是需返取个特殊的点过这两个点画一条直线即可】2、正比例函数

2、y=kx(k≠0)当k>0时,其同象过、象限,时y随x的增大而)当k<0时,其同象过、象限,时y随x的增大而3、一次函数y=kx+b,同象及函数性质Y随x的增大而①、k>0b>0过象限k>0b<0过象限Y随x的增大而k<0b>0过象限k<0b>0过象限4、若直线y=k1x+b1与l1y=k2x+b2平解,则k1k2,若k1≠k2,则l1与l2【名师提醒:y随x的变化情况,只取决于的符号与无关,而直线的平移,只改变的值的值不变】三、用系数法求一次函数解析式:关键:确定一次函数y=kx+b中的字母与的值步骤:1

3、、设一次函数表达式2、将x,y的对应值或点的坐标代入表达式3、解关于系数的方程或方程组4、将所求的系数代入等设函数表达式中四、一次函数与一元一次方程,一元一次不等式和二元一次方程组1、一次函数与一元一次方程:一般地将x=或y解一元一次方程求直线与坐标轴的交点坐标,代入y=kx+b中2、一次函数与一元一次不等式:kx+b>0或kx+b<0即一次函数同象位于x轴上方或下方时相应的x的取值范围,反之也成立3、一次函数与二元一次方程组:两条直线的交点坐标即为两个一次函数列二元一次方程组的解,反之根据方程组的解可求两

4、条直线的交点坐标【名师提醒:1、一次函数与三者之间的关系问题一定要结合同象去解决2、在一次函数中讨论交点问题即是讨论一元一次不等式的解集或二元一次方程组解得问题】五、一次函数的应用一般步骤:1、设定问题中的变量2、建立一次函数关系式3、确定取值范围4、利用函数性质解决问题5、作答【名师提醒:一次函数的应用多与二元一次方程组或一元一次不等式(组)相联系,经常涉及交点问题,方案涉及问题等】【重点考点例析】考点一:一次函数的同象和性质例1(2012•黄石)已知反比例函数y=(b为常数),当x>0时,y随x的增大而

5、增大,则一次函数y=x+b的图象不经过第几象限.(  )A.一B.二C.三D.四思路分析:先根据反比例函数的增减性判断出b的符号,再根据一次函数的图象与系数的关系判断出次函数y=x+b的图象经过的象限即可.解:∵反比例函数y=(b为常数),当x>0时,y随x的增大而增大,∴b<0,∵一次函数y=x+b中k=1>0,b<0,∴此函数的图象经过一、三、四限,∴此函数的图象不经过第二象限.故选B.点评:本题考查的是一次函数的图象与系数的关系及反比例函数的性质,一次函数y=kx+b的图象有四种情况:①当k>0,b>

6、0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.例2(2012•上海)已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的增大而(增大或减小).思路分析:首先利用待定系数法确定正比例函数解析式,再

7、根据正比例函数的性质:k>0时,y随x的增大而增大,k<0时,y随x的增大而减小确定答案.解:∵点(2,-3)在正比例函数y=kx(k≠0)上,∴2k=-3,解得:k=-,∴正比例函数解析式是:y=-x,∵k=-<0,∴y随x的增大而减小,故答案为:减小.点评:此题主要考查了正比例函数的性质,以及待定系数法确定正比例函数解析式,关键是掌握反比例函数的性质.对应训练1.(2012•沈阳)一次函数y=-x+2图象经过(  )A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限1.B2.(20

8、12•贵阳)在正比例函数y=-3mx中,函数y的值随x值的增大而增大,则P(m,5)在第象限.2.二2.解:∵正比例函数y=-3mx中,函数y的值随x值的增大而增大,∴-3m>0,解得m<0,∴点P(m,5)在第二象限.故答案为:二.考点二:一次函数解析式的确定例3(2012•聊城)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。