3.9 回顾与思考教案二.doc

3.9 回顾与思考教案二.doc

ID:31803830

大小:108.00 KB

页数:10页

时间:2019-01-18

3.9 回顾与思考教案二.doc_第1页
3.9 回顾与思考教案二.doc_第2页
3.9 回顾与思考教案二.doc_第3页
3.9 回顾与思考教案二.doc_第4页
3.9 回顾与思考教案二.doc_第5页
资源描述:

《3.9 回顾与思考教案二.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、回顾与思考教学目标(一)教学知识点1.了解点与圆,直线与圆以及圆和圆的位置关系.2.了解切线的概念,切线的性质及判定.3.会过圆上一点画圆的切线.(二)能力训练要求1.通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.2.通过探索弧长、扇形的面积、圆锥的侧面积和全面积的计算公式,发展学生的探索能力.3.通过画圆的切线,训练学生的作图能力.4.通过全章内容的归纳总结,训练学生各方面的能力.(三)情感与价值观要求1.通过探索有关公式,让学生懂得数学活动充满探索与创造,感受数学的严谨性以及数学结论的确定性.2.经历观察

2、、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.教学重点1.探索并了解点与圆、直线与圆、圆与圆的位置关系.2.探索切线的性质;能判断一条直线是否为圆的切线;会过圆上一点画圆的切线.教学难点探索各种位置关系及切线的性质.教学方法学生自己交流总结法.教具准备投影片五张:第一张:(记作A)第二张:(记作B)第三张:(记作C)第四张:(记作D)第五张:(记作E)教学过程Ⅰ.回顾本章内容[师]上节课我们对本章的所有知识进行了回顾,并讨论了这些知识间的关系,绘制了本章知识结构图,还对一部分内容进行了回顾,本节课继续进行有关知识的巩固.Ⅱ.具体

3、内容巩固一、确定圆的条件[师]作圆的问题实质上就是圆心和半径的问题,确定了圆心和半径,圆就随之确定.我们在探索这一问题时,与作直线类比,研究了经过一个点、两个点、三个点可以作几个圆,圆心的分布和半径的大小有什么特点.下面请大家自己总结.[生]经过一个点可以作无数个圆.因为以这个点以外的任意一点为圆心,以这两点所连的线段为半径就可以作一个圆.由于圆心是任意的,因此这样的圆有无数个.经过两点也可以作无数个圆.设这两点为A、B,经过A、B两点的圆,其圆心到A、B两点的距离一定相等,所以圆心应在线段AB的垂直平分线上,在AB的垂直平分线上任意取一点为圆心,这一点到A或B的距离为半径都可以作

4、一个经过A、B两点的圆.因此这样的圆也有无数个.经过在同一直线上的三点不能作圆.经过不在同一直线上的三点只能作一个圆.要作一个圆经过A、B、C三点,就要确定一个点作为圆心,使它到三点A、B、C的距离相等,到A、B两点距离相等的点在线段AB的垂直平分线上,到B、C两点距离相等的点应在线段B、C的垂直平分线上,那么同时满足到A、B、C三点距离相等的点应既在AB的垂直平分线上,又在BC的垂直平分线上,既两条直线的交点,因为交点只有一个,即确定了圆心.这个交点到A点的距离为半径,所以这样的圆只能作出一个.[师]经过不在同一条直线上的四个点A、B、C、D能确定一个圆吗?[生]不一定,过不在同

5、一条直线上的三点,我们可以确定一个圆,如果另外一个点到圆心的距离等于半径,则说明四个点在同一个圆上,如果另外一个点到圆心的距离不等于半径,说明四个点不在同一个圆上.例题讲解(投影片A)矩形的四个顶点在以对角线的交点为圆心的同一个圆上吗?为什么?[师]请大家互相交流.[生]解:如图,矩形ABCD的对角线AC和BD相交于点O.∵四边形ABCD为矩形,∴OA=OC=OB=OD.∴A、B、C、D四点到定点O的距离都等于矩形对角线的一半.∴A、B、C、D四点在以O为圆心,OA为半径的圆上.二、三种位置关系[师]我们在本章学习了三种位置关系,即点和圆的位置关系;直线和圆的位置关系;圆和圆的位置

6、关系.下面我们逐一来回顾.1.点和圆的位置关系[生]点和圆的位置关系有三种,即点在圆外;点在圆上;点在圆内.判断一个点是在圆的什么部位,就是看这一点与圆心的距离和半径的大小关系,如果这个距离大于半径,说明这个点在圆外;如果这个距离等于半径,说明这个点在圆上;如果这个距离小于半径,说明这个点在圆内.[师]总结得不错,下面看具体的例子.(投影片B)1.⊙O的半径r=5cm,圆心O到直线l的距离d=OD=3m.在直线l上有P、Q、R三点,且有PD=4cm,QD>4cm,RD<4cm,P、Q、R三点对于⊙O的位置各是怎样的?2.菱形各边的中点在同一个圆上吗?分析:要判断某些点是否在圆上,只

7、要看这些点到圆心的距离是否等于半径.[生]1.解:如图(1),在Rt△OPD中,∵OD=3,PD=4,∴OP==5=r.所以点P在圆上.同理可知OR=<5,OQ=>5.所以点R在圆内,点Q在圆外.2.如图(2),菱形ABCD中,对角线AC和BD相交于点O,E、F、G、H分别是各边的中点.因为菱形的对角线互相垂直,所以△AOB、△BOC、△COD、△DOA都是直角三角形,又由于E、F、G、H分别是各直角三角形斜边上的中点,所以OE、OF、OG、OH分别是各直角三角形斜边

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。