griffiths,solution to iqm-errata

griffiths,solution to iqm-errata

ID:31462499

大小:79.34 KB

页数:7页

时间:2019-01-10

griffiths,solution to iqm-errata_第1页
griffiths,solution to iqm-errata_第2页
griffiths,solution to iqm-errata_第3页
griffiths,solution to iqm-errata_第4页
griffiths,solution to iqm-errata_第5页
资源描述:

《griffiths,solution to iqm-errata》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ErrataInstructor’sSolutionsManualIntroductiontoQuantumMechanicsAuthor:DavidGriffithsDate:June14,2001•Page3,Prob.1.6(b):lasttwolinesshouldread1π2π21=A+0+a=a+.2λλλ2λ22221211σ=x−x=a+−a=;σ=√.2λ2λ2λ•Page8,Prob.2.6(b):inthefirstbox,theargumentofthesecondsineshouldincludeanx.√•Page9,Pr

2、ob.2.9:inthelastline,c=815/π3.1•Page10,Prob.2.11:inthethirdlinetheproofassumesthatg(whichinourcasewillbea−ψ)doesnotactuallyblowupat±∞fasterthanf(inourcaseψ)goestozero.Idon’tknowhowtofixthisdefectwithoutappealingtotheanalyticapproach,wherewefind(Eq.2.60)thatψ(x)2goesasymptoticallylikee−

3、mωx/2,andhencesotoodoesaψ.−•Page10,Prob.2.12:Becauseoftheiand−iinsertedinEqs.2.52and2.53respectively(seeCorrections#2—June1997),theexpressionforcattheendof(a)shouldincludeafactorofi.Also,addattheendof(a):“(The√signsareconventional.)”Inpart(b),everyωshouldcarryafactorofi(i.e.inserti

4、threetimesinthefirstline,inthreetimesinthenextline,and(−i)nintheboxedanswer).•Page11,Prob.2.14(a):forthesamereason,inthethirdline,removetheiintheexpressionforψ1.•Page19,Prob.2.30:or“...tanz≈z=(z0/z)2−1=(1/z)z02−z2.Now(Eqs.2.130and2.137)z2−z2=κ2a2,soz2=κa.Butz2−z2=00z41⇒z≈z,soκa≈z2..

5、.”00•Page22,Prob.2.36:removebox,andcontinueasfollows:Ψ(x,t)=√13ψ(x)e−iE1t/−ψ(x)e−iE3t/,13102122E3−E1

6、Ψ(x,t)

7、=9ψ1+ψ3−6ψ1ψ3cost,101soax=x

8、Ψ(x,t)

9、2dx0a913E3−E1=x1+x3−costxψ1(x)ψ3(x)dx,101050wherexn=a/2istheexpectationvalueofxinthenthstationarystate.Theremainingintegral

10、isaa2πx3πx12πx4πxxsinsindx=xcos−cosdxa0aaa0aa221a2πxxa2πxa4πx=cos+sin−cosa2πa2πa4πaaxa4πx−sin=0.4πa0Evidently,then,9a1aax=+=.1021022•Page23,Prob.2.37:Becauseoftheiand−iinsertedinEqs.2.52and2.53respectively(seeCorrections#2—June1997),line3onshouldreadasfollows:−i∗x=√ψn(

11、a+−a−)ψndx.ω2mButa+ψn=i√(n+1)ωψn+1[2.52],soa−ψn=−inωψn−1[2.53]1√x=√(n+1)ωψ∗ψdx+nωψ∗ψdx=0nn+1nn−1ω2mdx(bytheorthogonalityof{ψn}).Alsop=m=0.Meanwhiledt2−1−122xˆ=2mω2(a+−a−)(a+−a−)=2mω2(a+−a+a−−a−a++a−),2−1∗22sox=2ψn(a+−a+a−−a−a++a−)ψndx.But2mωa2ψ=a(i(n+1)ωψ)=−(n+1

12、)(n+2)ωψ.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。