欢迎来到天天文库
浏览记录
ID:31305653
大小:444.00 KB
页数:21页
时间:2019-01-08
《三角函数解三角形练习题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、..三角函数及解三角形练习题 一.解答题(共16小题)1.在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大小.2.已知3sinθtanθ=8,且0<θ<π.(Ⅰ)求cosθ;(Ⅱ)求函数f(x)=6cosxcos(x﹣θ)在[0,]上的值域.3.已知是函数f(x)=2cos2x+asin2x+1的一个零点.(Ⅰ)求实数a的值;(Ⅱ)求f(x)的单调递增区间.4.已知函数f(x)=sin(2x+)+sin2x.(1)求函数f(x)的最小正周期;(2)若函数g(x)对任意x∈R,有g(x)=f(x+),求函数g(x)在[﹣,]上的
2、值域.5.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.6.已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.7.已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.8.已知函数的部分图象如图所示.资料..(1)求函数f(x)的解析式;(2)在△
3、ABC中,角A,B,C的对边分别是a,b,c,若(2a﹣c)cosB=bcosC,求的取值范围.9.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,M为最高点,该图象与y轴交于点F(0,),与x轴交于点B,C,且△MBC的面积为π.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若f(α﹣)=,求cos2α的值.10.已知函数.(Ⅰ)求f(x)的最大值及相应的x值;(Ⅱ)设函数,如图,点P,M,N分别是函数y=g(x)图象的零值点、最高点和最低点,求cos∠MPN的值.11.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,
4、已知f()=0.资料..(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.12.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.13.如图,A、B、C、D为平面四边形ABCD的四个内角.(Ⅰ)证明:tan=;(Ⅱ)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan+tan+tan+tan的值.14.已知函数f(x)=sin2x
5、﹣cos2x.(Ⅰ)求f(x)的最小周期和最小值;(Ⅱ)将函数f(x)的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)的图象.当x∈时,求g(x)的值域.15.已知函数f(x)=sin(﹣x)sinx﹣cos2x.(I)求f(x)的最小正周期和最大值;(II)讨论f(x)在[,]上的单调性.16.已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.资料.. 资料..17.设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(
6、Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.18.已知函数f(x)=sin(x﹣)+cos(x﹣),g(x)=2sin2.(Ⅰ)若α是第一象限角,且f(α)=,求g(α)的值;(Ⅱ)求使f(x)≥g(x)成立的x的取值集合.19.已知向量=(m,cos2x),=(sin2x,n),函数f(x)=•,且y=f(x)的图象过点(,)和点(,﹣2).(Ⅰ)求m,n的值;(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函
7、数y=g(x)的图象,若y=g(x)图象上的最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.资料..三角函数及解三角形练习题参考答案与试题解析 一.解答题(共16小题)1.(2017•遂宁模拟)在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大小.【分析】对已知式平方,化简,求出sin(A+B)=,确定A+B的值,利用三角形的内角和求出C的大小.【解答】解:两边平方(3sinA+4cosB)2=36得9sin2A+16cos2B+24sinAcosB=36①(4sinB+3cosA)2=1得16sin2B+
8、9cos2A+24sinBcosA=1②①+②得:(9sin2A+
此文档下载收益归作者所有