欢迎来到天天文库
浏览记录
ID:31305414
大小:68.50 KB
页数:8页
时间:2019-01-08
《高考数学一轮复习 第5章 数列 热点探究课3 数列中的高考热点问题教师用书 文 新人教a版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争热点探究课(三) 数列中的高考热点问题[命题解读] 数列在中学数学中既具有独立性,又具有较强的综合性,是初等数学与高等数学的一个重要衔接点,从近五年全国卷高考试题来看,解答题第1题(全国卷T17)交替考查数列与解三角形,本专题的热点题型有:一是等差、等比数列的综合问题;二是数列的通项与求和;三是数列与函数、不等式的交汇,难度中等.热点1 等差、等比数列的综合问题解决等差、等比数列的
2、综合问题,关键是理清两种数列的项之间的关系,并注重方程思想的应用,等差(比)数列共涉及五个量a1,an,Sn,d(q),n,“知三求二”. (2016·天津高考)已知{an}是等比数列,前n项和为Sn(n∈N*),且-=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(-1)nb}的前2n项和.[解] (1)设数列{an}的公比为q.由已知,有-=,解得q=2或q=-1.2分又由S6=a1·=63,知q≠-1,所以a1·=63,得a1=1.所以an=2n-1.5分(2)由题意,得bn=(log2an+lo
3、g2an+1)=(log22n-1+log22n)=n-,即{bn}是首项为,公差为1的等差数列.8分设数列{(-1)nb}的前n项和为Tn,则T2n=(-b+b)+(-b+b)+…+(-b+b)=b1+b2+b3+b4+…+b2n-1+b2n==2n2.10分为充分发动群众积极参与到扫黑除恶工作中来,束城镇通过由包片班子成员、包村干部、村书记召开各村群众大会广泛宣传动员、公布全镇扫黑除恶举报电话、邮箱和纪委举报等方式,增强人民群众通黑恶势力做斗争的决心,在全镇范围内营造了全民扫黑除恶的浓厚氛围为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有
4、序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争[规律方法] 1.若{an}是等差数列,则{ban}(b>0,且b≠1)是等比数列;若{an}是正项等比数列,则{logban}(b>0,且b≠1)是等差数列.2.对等差、等比数列的综合问题,应重点分析等差、等比数列项之间的关系,以便实现等差、等比数列之间的相互转化.[对点训练1] 已知数列{an}的前n项和为Sn,常数λ>0,且λa1an=S1+Sn对一切正整数n都成立.(1)求数列{an}的通项公式;(2)设a1>0,λ=100.当n为何值时,数列的前n项和最大
5、?[解] (1)取n=1,得λa=2S1=2a1,a1(λa1-2)=0.若a1=0,则Sn=0.当n≥2时,an=Sn-Sn-1=0-0=0,所以an=0(n≥1).2分若a1≠0,则a1=.当n≥2时,2an=+Sn,2an-1=+Sn-1,两式相减得2an-2an-1=an,所以an=2an-1(n≥2),从而数列{an}是等比数列,所以an=a1·2n-1=·2n-1=.综上,当a1=0时,an=0;当a1≠0时,an=.5分(2)当a1>0,且λ=100时,令bn=lg,由(1)知,bn=lg=2-nlg2.7分所以数列{bn}是单调递减的等差数列,公差为-lg2.b1
6、>b2>…>b6=lg=lg>lg1=0,当n≥7时,bn≤b7=lg=lg7、础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争 (本小题满分12分)(2016·全国卷Ⅰ)已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2=,anbn+1+bn+1=nbn.(1)求{an}的通项公式;(2)求{bn}的前n项和.[思路点拨] (1)取n=1,先求出a1,再求{an}的通项公式.(2)将an代入anbn+1+bn+1=nbn,得出数列{bn}为等比数列,再求{bn}的前n项和.[规范解答] (1)由已知,a1b2+b
7、础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争 (本小题满分12分)(2016·全国卷Ⅰ)已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2=,anbn+1+bn+1=nbn.(1)求{an}的通项公式;(2)求{bn}的前n项和.[思路点拨] (1)取n=1,先求出a1,再求{an}的通项公式.(2)将an代入anbn+1+bn+1=nbn,得出数列{bn}为等比数列,再求{bn}的前n项和.[规范解答] (1)由已知,a1b2+b
此文档下载收益归作者所有