大跨度桥梁实用几何非线性分析_1

大跨度桥梁实用几何非线性分析_1

ID:30644049

大小:19.16 KB

页数:7页

时间:2019-01-02

大跨度桥梁实用几何非线性分析_1_第1页
大跨度桥梁实用几何非线性分析_1_第2页
大跨度桥梁实用几何非线性分析_1_第3页
大跨度桥梁实用几何非线性分析_1_第4页
大跨度桥梁实用几何非线性分析_1_第5页
资源描述:

《大跨度桥梁实用几何非线性分析_1》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、从本学科出发,应着重选对国民经济具有一定实用价值和理论意义的课题。课题具有先进性,便于研究生提出新见解,特别是博士生必须有创新性的成果大跨度桥梁实用几何非线性分析摘要:本文从简单实用的角度论述了空间杯系结构的几何非线性分析理论。文中分析了非线性有限元方法的求解过程,特别强调决定几何非线性收敛结果的关键问题,即由节点位移增量计算单元的内力增量。通过引入随转坐标系,论述了平面和空间梁单元小应变变形时单元内力增量的计算问题。用本文方法可以分析大跨度桥梁结构的六位移大旋转问题。并且用实桥算例进行了验证。关键词:大跨度桥梁

2、几何非线性实用分析非线性有限元小应变理论江阴长江大桥一.引言.现代大跨度桥梁等工程结构的柔性特征已十分明显,对于这些结构考虑几何非线性的影响己必不可少。并且,计算机能力的大大提高也使得分析大型复杂结构的非线性问题成为可行。0年代国外对几何非线性问题的发展已相当完善[1,],国内在这方面也做了不少的工作[-]在工程结构几何非线性分析中,按照参考构形的不同可分为TL法应用较多。以前的文献课题份量和难易程度要恰当,博士生能在二年内作出结果,硕士生能在一年内作出结果,特别是对实验条件等要有恰当的估计。从本学科出发,应着重

3、选对国民经济具有一定实用价值和理论意义的课题。课题具有先进性,便于研究生提出新见解,特别是博士生必须有创新性的成果大都对结构的几何刚度矩阵进行了复杂而详细的推导。从文中的分析可以发现,结构几何刚度矩阵的精确与否并不实质性地影响迭代收敛的最终结果,求解几何非线性问题的关键在于如何由节点位移增量准确地计算出单元的内力增量,而这一点以前文献都没有提到过。因此,本文的重点放在论述单元内力增量的计算上。工程上很早就开始使用拖动坐标系来求解大跨度桥梁结构的大挠度问题,本文则把它应用到单元内力增量的计算中。从实质上说,这里的拖

4、动坐标系与上面提到的随转坐标系没有区别。因此,在理论方法上,目前文中的方法可以归类到CR-UL法。但由于本文重点不在于详细介绍这种方法的理论体系,所以论述中均不再使用该名词。本文的目的主要是通过简化复杂的几何非线性分析方法,推广该方法在实际工程中的应用。二、非线性商限元求解过程对于工程结构的非线性问题,用有限元方法求解时的非线性平衡方程可写成以下的一般形式:Fs(δ)-P0=0其中,为节点的位移向量;Fs(δ)为结构的等效节点抗力向量,它随节点位移及单元内力而变化;PO为外荷载作用的等效节点荷载向量,为方便起见,

5、这里暂时假定它不随节点位移而变化。课题份量和难易程度要恰当,博士生能在二年内作出结果,硕士生能在一年内作出结果,特别是对实验条件等要有恰当的估计。从本学科出发,应着重选对国民经济具有一定实用价值和理论意义的课题。课题具有先进性,便于研究生提出新见解,特别是博士生必须有创新性的成果由于式中的等效节点抗力一般无法用节点位移显式表示,故不可能直接对非线性平衡方程进行求解。但实际结构的整体切向刚度容易得到,所以通常应用Newton-Raphson迭代方法求解该问题。结构的整体切向刚度矩阵KT可表示如下dPO=KTdδ式中

6、,KT=KE十KG,其中KE为结构的整体弹性刚度矩阵,KG为几何刚度矩阵。用混合Newton-Raphson迭代方法求解结构非线性问题的基本过程如下:(1)将等效节点荷载PO分成n步,ΔP0=PO/n,计算并组集结构的整体切向刚度矩阵,进入加载步循环;(2)求解节点位移增量;(3)计算各单元内力增量,修正单元内力;(4)更新节点坐标,计算节点不平衡力R;(5)判断节点不平衡力R是否小于允许值,如满足条件,则进入下一个加载步;如不满足条件,重新计算结构的整体切向刚度矩阵,用R代替ΔP0,回到第步;()全部加载步完成

7、之后,结束。从上述求解过程中可见,最为关键的一步是第课题份量和难易程度要恰当,博士生能在二年内作出结果,硕士生能在一年内作出结果,特别是对实验条件等要有恰当的估计。从本学科出发,应着重选对国民经济具有一定实用价值和理论意义的课题。课题具有先进性,便于研究生提出新见解,特别是博士生必须有创新性的成果步,即由节点位移增量计算单元的内力增量。也可以说是由这一步决定了最终的收敛结果,以下将对此着重论述。其实结构的整体切向刚度矩阵对结果并无实质性的影响,修正的NetwRaphson方法正是利用这一点来节省迭代计算的时间。以

8、前的文献对空间梁单元几何刚度矩阵的推导方面论述较多,都建立在一些假定的基础上,这里就不详细说明。考虑到结构的整体切向刚度矩阵精确与否并不改变最终结果,仅影响迭代收敛的速度,并且不是越精确的整体切向刚度矩阵迭代收敛越快。三、小应变时单元内力增百计算在一般情况下,工程结构的几何非线性都属于小应变大位移问题。对于这类问题,单元内力增量的计算比较简单。平面梁单元是空间梁单元发展的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。