高中数学 2.1.3 分层抽样教案 新人教b版必修3

ID:29855522

大小:55.50 KB

页数:6页

时间:2018-12-24

高中数学 2.1.3 分层抽样教案 新人教b版必修3_第1页
高中数学 2.1.3 分层抽样教案 新人教b版必修3_第2页
高中数学 2.1.3 分层抽样教案 新人教b版必修3_第3页
高中数学 2.1.3 分层抽样教案 新人教b版必修3_第4页
高中数学 2.1.3 分层抽样教案 新人教b版必修3_第5页
资源描述:

《高中数学 2.1.3 分层抽样教案 新人教b版必修3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高中数学2.1.3分层抽样教案新人教B版必修3教学分析     教学通过实例介绍了分层抽样的实施步骤.值得注意的是分层抽样在内容上与系统抽样是平行的,在教学过程中强调:分层抽样适用于由差异明显的几部分组成的情况;在每一层进行抽样时,采用简单随机抽样或系统抽样;分层抽样也是等可能抽样.三维目标     1.通过对实例的分析,了解分层抽样方法.2.使学生经历较为系统的数据处理过程,体会统计思维过程.3.了解数学应用的广泛性,提高学生的归纳、总结能力.重点难点     教学重点:分层抽样及其实施步骤.教学难点:确定各

2、层的入样个体数目.课时安排     1课时导入新课     思路1.中国共产党第十七次代表大会的代表名额原则上是按各选举单位的党组织数、党员人数进行分配的,并适当考虑前几次代表大会代表名额数等因素.按照这一分配办法,各选举单位的代表名额,比十六大时都有增加.另外,按惯例,中央将确定一部分已经退出领导岗位的老党员作为特邀代表出席大会.这种产生代表的方法是简单随机抽样还是系统抽样?教师点出课题:分层抽样.思路2.我们已经学习了两种抽样方法:简单随机抽样和系统抽样,本节课我们学习分层抽样.推进新课     1.假设某

3、地区有高中生2400人,初中生10900人,小学生11000人,此地区教育部门为了了解本地区学生的近视情况及其形成原因,要从本地区的学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?2.想一想为什么这样取各个学段的个体数?3.请归纳分层抽样的定义.4.请归纳分层抽样的步骤.5.分层抽样时应如何分层?其适用于什么样的总体?讨论结果:1.分别利用系统抽样在高中生中抽取2400×1%=24人,在初中生中抽取10900×1%=109人,在小学生中抽取11000×1%=110人.这种抽样方法称为分层抽样.2.含有个体

4、多的层,在样本中的代表也应该多,即样本从该层中抽取的个体数也应该多.这样的样本才有更好的代表性.3.当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,常采用分层抽样.将总体中各个个体按某种特征分成若干个互不重叠的部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样.4.分层抽样的步骤(1)分层:按某种特征将总体分成若干部分(层);(2)按抽样比确定每层抽取个体的个数;(3)各层分别按简单随机抽样的方法抽取样本;(4)综合每层抽样,组成样本.

5、5.分层抽样又称类型抽样,应用分层抽样应遵循以下要求:(1)分层时将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则,即保证样本结构与总体结构一致性.(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.(3)当总体个体差异明显时,采用分层抽样.思路1例1一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁以上的有95人,为了了解这个单位职工与身体状况有关的

6、某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?分析:由于职工年龄与这项指标有关,所以应选取分层抽样来抽取样本.解:用分层抽样来抽取样本,步骤是:(1)分层:按年龄将150名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为=,则在不到35岁的职工中抽125×=25人;在35岁至49岁的职工中抽280×=56人;在50岁以上的职工中抽95×=19人.(3)在各层分别按抽签法或随机数表法抽取样本.(4)综合每层抽样,组成样

7、本.点评:本题主要考查分层抽样及其实施步骤.如果总体中的个体有差异时,那么就用分层抽样抽取样本.用分层抽样抽取样本时,要把性质、结构相同的个体组成一层.变式训练1.某市的3个区共有高中学生20000人,且3个区的高中学生人数之比为2∶3∶5,现要从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程.分析:由于该市高中学生的视力有差异,按3个区分成三层,用分层抽样来抽取样本.在3个区分别抽取的学生人数之比也是2∶3∶5,所以抽取的学生人数分别是200×=40;200×=60;200×

8、=100.解:用分层抽样来抽取样本,步骤是:(1)分层:按区将20000名高中生分成三层.(2)确定每层抽取个体的个数.在这3个区抽取的学生数目分别是40、60、100.(3)在各层分别按随机数表法抽取样本.(4)综合每层抽样,组成样本.2.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是(  )A.简单随机

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《高中数学 2.1.3 分层抽样教案 新人教b版必修3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高中数学2.1.3分层抽样教案新人教B版必修3教学分析     教学通过实例介绍了分层抽样的实施步骤.值得注意的是分层抽样在内容上与系统抽样是平行的,在教学过程中强调:分层抽样适用于由差异明显的几部分组成的情况;在每一层进行抽样时,采用简单随机抽样或系统抽样;分层抽样也是等可能抽样.三维目标     1.通过对实例的分析,了解分层抽样方法.2.使学生经历较为系统的数据处理过程,体会统计思维过程.3.了解数学应用的广泛性,提高学生的归纳、总结能力.重点难点     教学重点:分层抽样及其实施步骤.教学难点:确定各

2、层的入样个体数目.课时安排     1课时导入新课     思路1.中国共产党第十七次代表大会的代表名额原则上是按各选举单位的党组织数、党员人数进行分配的,并适当考虑前几次代表大会代表名额数等因素.按照这一分配办法,各选举单位的代表名额,比十六大时都有增加.另外,按惯例,中央将确定一部分已经退出领导岗位的老党员作为特邀代表出席大会.这种产生代表的方法是简单随机抽样还是系统抽样?教师点出课题:分层抽样.思路2.我们已经学习了两种抽样方法:简单随机抽样和系统抽样,本节课我们学习分层抽样.推进新课     1.假设某

3、地区有高中生2400人,初中生10900人,小学生11000人,此地区教育部门为了了解本地区学生的近视情况及其形成原因,要从本地区的学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?2.想一想为什么这样取各个学段的个体数?3.请归纳分层抽样的定义.4.请归纳分层抽样的步骤.5.分层抽样时应如何分层?其适用于什么样的总体?讨论结果:1.分别利用系统抽样在高中生中抽取2400×1%=24人,在初中生中抽取10900×1%=109人,在小学生中抽取11000×1%=110人.这种抽样方法称为分层抽样.2.含有个体

4、多的层,在样本中的代表也应该多,即样本从该层中抽取的个体数也应该多.这样的样本才有更好的代表性.3.当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,常采用分层抽样.将总体中各个个体按某种特征分成若干个互不重叠的部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样.4.分层抽样的步骤(1)分层:按某种特征将总体分成若干部分(层);(2)按抽样比确定每层抽取个体的个数;(3)各层分别按简单随机抽样的方法抽取样本;(4)综合每层抽样,组成样本.

5、5.分层抽样又称类型抽样,应用分层抽样应遵循以下要求:(1)分层时将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则,即保证样本结构与总体结构一致性.(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.(3)当总体个体差异明显时,采用分层抽样.思路1例1一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁以上的有95人,为了了解这个单位职工与身体状况有关的

6、某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?分析:由于职工年龄与这项指标有关,所以应选取分层抽样来抽取样本.解:用分层抽样来抽取样本,步骤是:(1)分层:按年龄将150名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为=,则在不到35岁的职工中抽125×=25人;在35岁至49岁的职工中抽280×=56人;在50岁以上的职工中抽95×=19人.(3)在各层分别按抽签法或随机数表法抽取样本.(4)综合每层抽样,组成样

7、本.点评:本题主要考查分层抽样及其实施步骤.如果总体中的个体有差异时,那么就用分层抽样抽取样本.用分层抽样抽取样本时,要把性质、结构相同的个体组成一层.变式训练1.某市的3个区共有高中学生20000人,且3个区的高中学生人数之比为2∶3∶5,现要从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程.分析:由于该市高中学生的视力有差异,按3个区分成三层,用分层抽样来抽取样本.在3个区分别抽取的学生人数之比也是2∶3∶5,所以抽取的学生人数分别是200×=40;200×=60;200×

8、=100.解:用分层抽样来抽取样本,步骤是:(1)分层:按区将20000名高中生分成三层.(2)确定每层抽取个体的个数.在这3个区抽取的学生数目分别是40、60、100.(3)在各层分别按随机数表法抽取样本.(4)综合每层抽样,组成样本.2.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是(  )A.简单随机

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭