欢迎来到天天文库
浏览记录
ID:29747480
大小:91.01 KB
页数:6页
时间:2018-12-23
《几何画板》在初中数学教学中的应用实例》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、《几何画板》在初中数学教学中的应用实例摘要:《几何画板》是实现“数形结合”思想的一个有效的辅助教学工具,有很强的实用性,既减轻教师的工作负担,改变教学环境又为问题的有效解决提供便利。以大信息量的储备来满足学生的需求,使学生根据自身的需要进行查阅,进行学习。只有把“几何画板”融入到几何学科的教学中去,才能使原本抽象的知识形象化,生活化。关键词:几何画板初中数学教学应用一、引言《几何画板》是实现“数形结合”思想的一个有效的辅助教学工具,有很强的实用性,既减轻教师的工作负担,改变教学环境又为问题的有效解决提供便利。利用“几何画板”绘图辅助数学教学,有着传统尺规所无法比拟的优越性。它严谨的作图程序、
2、强大的作图和计算功能,能有效地树立学生严谨、科学的作图观;有利于数与形的完美结合;有利于学生建构数学知识;有利于教师提高数学教学质量。《几何画板》显示画面的快捷、容量大、可储存,因此它可以提高单位时间的利用率,为知识信息量的增大提供了空间,数学学习必须因材施教。以大信息量的储备来满足学生的需求,使学生根据自身的需要进行查阅,进行学习。只有把《几何画板》融入到几何学科的教学中去,才能使原本抽象的知识形象化,生活化。二、《几何画板》的主要功能1.提供了画点(任意点、中点、交点)、画圆(圆、圆弧)、画线(直线、射线、线段、平行线、角平分线、垂线)功能。通过该平台可以准确制作各种图形,初中几何中的尺
3、规作图全部可以实现,并可追踪轨迹,设置动画功能。2.提供了旋转、平移、缩放、反射等图形变换功能。3.提供了强大的度量功能(长度、角度、面积、半径、斜率、比例、坐标等)和计算功能(代数运算、常用十余种函数计算等),能动态演示数据变化,并可根据需要制表。4.提供了图表功能,可建立直角坐标系、极坐标系,方便作出直线、二次曲线,绘制点,直接绘制函数图象。5.提供了一般软件所具备的编辑功能,并能为所绘图形添加颜色,最新版对文字编辑可选择字体、字型、字号等常规的功能外,新增加了常用符号及数学公式编辑功能。插入对象功能支持“OLE”对象,如BMP位图、PowerPoint幻灯片、声音(.wav)、电影(.
4、avt)、Excel表格,Word文档,甚至可以通过打“包”直接调用应用程序,可以进行超级链接(如Internet网),并可利用剪贴板将绘制图形转换到其它Windows应用程序中,以达到交换信息的目的。三、教学中应用实例例1:在《轴对称》这一节中,通过按纽进行操作,使学生更直观的感受轴对称的概念与性质。例1图例2图例2:对“一次函数y=kx+b(k≠0)的性质”的学习,如果学生不清楚y=kx+b(k≠0)在k>0或k<0时表示了什么样子的图像,不知道b的取值对函数图像的作用和影响,那么根据图像确定k、b的取值范围,学生解起来就会觉得棘手。其性质进行探索时,我们只要在几何画板中,设定两个参数K
5、与b,通过改变K与b的值就可以获得无数多个一次函数图象,k与b的值一发生变化,图象也以随之而变化,这个是传统教学所无法比较的。变动k与b的值,如当b=0时一次函数的图象(正比例函数y=kx)是一条经过原点的直线,当k>0时,它的图象经过第一、三象限;当k<0时,它的图象经过第二、四象限……。在老师的演示下,一次函数的图象大量呈现在学生面前,学生自已动手作图与观察比较老师作图,一次函数的图及性质也可以轻松得以理解。例3:验证勾股定理。(1)任意作直角三角形,分别从三条边出发向外作正方形。(2)通过度量得出每个正方形的面积,计算S1+S2的值,与S3比较。(3)得出结论a2+b2=c2。(4)拖
6、动任意一点,改变图形大小,观察能否得出上述结论。例3图例3图例4图例4:在讨论二次函数y=ax2+bx+c(a≠0)或y=a(x+h)2+k(a≠0)中,二次函数图象与常量a、b、c、h、k之间的关系时。可作以下设计:1.在演示画面中,实时显示抛物线的顶点坐标、与y轴的交点坐标和对称轴。2.拖动有向线段a,改变a的取值。观察抛物线开口方向及大小。3.归纳:当a>0时,开口向上,开口大小随a的增大而变小;当a<0时,开口向下,开口大小随a的减小而变小;当a=0时,二次函数退化成为一次函数y=kx+b。(说明:一次函数不是特殊的二次函数)4.拖动有向线段c,改变c的取值。观察可发现抛物线随c的值
7、变大、变小而升高或降低。并可观察抛物线与y轴交点的纵坐标和c的取值相等,从而得到抛物线y=ax2+bx+c与y轴交于点(0,c)。5.拖动有向线段h、k,改变h、k的取值。观察得抛物线随h、k的变化而左右平移或上下平移。顶点坐标是(h、k),也就是(-b/2a,(4ac-b2)/4a)。从而归纳出抛物线的顶点坐标与对称轴和h、k的关系,并将实验观察所得结论,进行推理论证。例4图例5:如图所示,根据相交弦定理,
此文档下载收益归作者所有