欢迎来到天天文库
浏览记录
ID:29639959
大小:143.00 KB
页数:4页
时间:2018-12-21
《(春)八年级数学下册 20.2 用样本方差估计总体方差(第2课时)教案 (新版)沪科版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、用样本方差估计总体方差1.会用样本方差估计总体方差;(重点、难点)2.体会样本代表性的重要意义. 一、情境导入某篮球队对运动员进行3分球投篮成绩测试,每人每天投3分球10次,对甲、乙两名队员在五天中进球的个数统计结果如下:队员每人每天进球数甲1061068乙79789他们的平均进球数都是8,现在从甲、乙两名队员中选出一人去参加3分球投篮大赛,你认为应该选哪名队员去?为什么?二、合作探究探究点一:用样本方差估计总体方差【类型一】质量问题两台机床同时生产直径(单位:mm)为10的零件,为了检验产品的质
2、量,质量检验员从两台机床的产品中各抽出5件进行测量,结果如下:机床甲89101112机床乙710101013如果你是质量检验员,在收集到上述数据后,你将利用哪些统计知识来判断这两台机床生产的零件的质量优劣?解析:求出每组数据的平均数,根据方差公式求出每组的方差,然后根据方差的大小进行比较.解:x甲=(8+9+10+11+12)=10(mm),x乙=(7+10+10+10+13)=10(mm).由于x甲=x乙,因此平均直径不能反映两台机床生产出的零件的质量优劣;再计算方差,可得s=2,s=3.6,∵s
3、动小.∴从产品质量稳定性的角度看,甲机床生产的零件质量更好一些;从众数来看,甲机床只有1个零件的直径是10mm,而乙机床有3个零件的直径是10mm,∴从众数的角度看,乙机床生产的零件质量更好一些.方法总结:解决此题,要先分别计算两组数据的平均数,只有在平均数相等或非常接近的情况下,才能利用方差的大小判断数据的稳定性.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型二】产量问题在8个试验点对两个早稻品种进行栽培对比试验,它们在各试验点的产量如下(单位:kg):甲:402,492,495,409,460,420,456,5
4、01;乙:428,466,465,428,436,455,449,459.哪种水稻的平均产量较高?哪种水稻的产量比较稳定?解析:要比较哪种水稻的产量稳定,需比较两种水稻产量的方差.解:x甲=(402+492+495+409+460+420+456+501)=454.375(kg),x乙=(428+466+465+428+436+455+449+459)=448.25(kg),s=[(402-454.375)2+(492-454.375)2+…+(501-454.375)2]≈1407,s=[(428-448.25)2+(466-4
5、48.25)2+…+(459-448.25)2]≈216.因为x甲>x乙,所以甲种水稻的平均产量较高;又因为s>s,所以乙种水稻比甲种水稻的产量稳定,由此可估计乙种水稻的产量比较稳定.方法总结:方差越小,产量越稳定.当样本具有代表性时,可用样本方差去估计总体方差.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型三】比赛成绩问题如图所示是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是( )A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定解析:∵x甲==9(
6、环),x乙==9(环),s=×[4×(8-9)2+2×(9-9)2+4×(10-9)2]=0.8,s=×[3×(9-8)2+4×(9-9)2+3×(10-9)2]=0.6,∵x甲=x乙,s>s,∴乙比甲的成绩稳定.故选B.方法总结:从统计图中读取数据信息是解决本题的前提.方差是反映数据稳定性的统计量,方差越小,数据稳定性越好.变式训练:见《学练优》本课时练习“课后巩固提升”第6题探究点二:根据方差做决策【类型一】根据方差做决策某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总数排列名次,在规定时间内每人踢100个以上(
7、含100个)为优秀,下表是成绩最好的甲、乙两班各5名学生的比赛数据(单位:个).1号2号3号4号5号总数甲班891009611897500乙班1009611090104500统计发现两班总数相等,此时有人建议,可以通过考查数据中的其他信息来评判.试从两班比赛数据的中位数、方差、优秀率三个方面考虑,你认为应该选定哪一个班为冠军?解析:平均数=总成绩÷学生人数;中位数是按次序排列后的第3个数.根据方差的计算公式得到数据的方差.解:甲班5名学生比赛成绩的中位数是97个,乙班5名学生比赛成绩的中位数是100个;x甲=×500=100(个)
8、,x乙=×500=100(个);s=[(89-100)2+(100-100)2+(96-100)2+(118-100)2+(97-100)2]=94,s=[(100-100)2+(96-100)2+(110-100)2+(90-100)2+(104
此文档下载收益归作者所有