八年级数学下册 17 函数及其图象 17.2 函数的图像 2 函数的图象学案2(新版)华东师大版

八年级数学下册 17 函数及其图象 17.2 函数的图像 2 函数的图象学案2(新版)华东师大版

ID:29605911

大小:220.56 KB

页数:4页

时间:2018-12-21

上传者:U-39028
八年级数学下册 17 函数及其图象 17.2 函数的图像 2 函数的图象学案2(新版)华东师大版_第1页
八年级数学下册 17 函数及其图象 17.2 函数的图像 2 函数的图象学案2(新版)华东师大版_第2页
八年级数学下册 17 函数及其图象 17.2 函数的图像 2 函数的图象学案2(新版)华东师大版_第3页
八年级数学下册 17 函数及其图象 17.2 函数的图像 2 函数的图象学案2(新版)华东师大版_第4页
资源描述:

《八年级数学下册 17 函数及其图象 17.2 函数的图像 2 函数的图象学案2(新版)华东师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

函数的图象(2)课标要求:1.使学生掌握用描点法画实际问题的函数图象;2.使学生能从图形中分析变量的相互关系,寻找对应的现实情境,预测变化趋势等问题.培养应用数学的意识。【导学目标】知识与技能::1.结合实际问题,经历探索用图象表示函数的过程.2.通过学生自己动手,体会用描点法画函数的图象的步骤。过程与方法:引导、启发、探索讨论。情感态度与价值观:通过师生共同交流、探讨,使学生在掌握知识的基础上,引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力【导学核心点】重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。难点:灵活选择自变量的值,便于描点使画图简便.注意自变量的取值范围。教具应用:【导学过程】一、知识链接:问题王导授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(从小强开始爬山时计时).问图中有一个直角坐标系,它的横轴(x轴)和纵轴(y轴)各表示什么?答横轴(x轴)表示两人爬山所用时间,纵轴(y轴)表示两人离开山脚的距离.问如图,线段上有一点P,则P的坐标是多少?表示的实际意义是什么?答P的坐标是(3,90).表示小强爬山3分后,离开山脚的距离90米.我们能否从图象中看出其它信息呢?二.学习新课看上面问题的图,回答下列问题:(1)小强让爷爷先上多少米? (2)山顶离山脚的距离有多少米?谁先爬上山顶?分析(1)小强让爷爷先跑的路程,应该看表示爷爷的这条线段.由于从小强开始爬山时计时的,因此这时爷爷爬山所用时间是0,而x轴表示爬山所用时间,得x=0.可在线段上找到这一点A(如图).A点对应的函数值y=60.(2)y轴表示离开山脚的距离,山顶离山脚的距离指的是离开山脚的最大距离,也就是函数值y取最大值.可分别在这两条线段上找到这两点B、C(如图),过B、C两点分别向x轴、y轴作垂线,可发现交y轴于同一点Q(因为两人爬的是同一座山),Q点的数值就是山顶离山脚的距离,分别交x轴于M、N,M、N点的数值分别是小强和爷爷爬上山顶所用的时间,比较两值的大小就可判断出谁先爬上山顶.2、典型例题例1小明从家里出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家.下面的图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.请你由图具体说明小明散步的情况.例2王强在电脑上进行高尔夫球的模拟练习,在某处按函数关系式击球,球正好进洞.其中,y(m)是球的飞行高度,x(m)是球飞出的水平距离.(1)试画出高尔夫球飞行的路线;(2)从图象上看,高尔夫球的最大飞行高度是多少?球的起点与洞之间的距离是多少?三.检测反馈1.下图为世界总人口数的变化图.根据该图回答:(1)从1830年到1998年,世界总人口数呈怎样 的变化趋势?(2)在图中,显示哪一段时间中世界总人口数变化最快?2.一枝蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列3幅图象中能大致刻画出这枝蜡烛点燃后剩下的长度h(厘米)与点燃时间t之间的函数关系的是().3.已知等腰三角形的周长为12cm,若底边长为ycm,一腰长为xcm.(1)写出y与x的函数关系式;(2)求自变量x的取值范围;(3)画出这个函数的图象.4.周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离开家后的距离S(千米)与时间t(时)的关系可以用图中的曲线表示.根据这个图象回答下列问题:(1)小李到达离家最远的地方是什么时间?(2)小李何时第一次休息?(3)10时到13时,小骑了多少千米?(4)返回时,小李的平均车速是多少?四.课内小结1.画实际问题的图象时,必须先考虑函数自变量的取值范围.有时为了表达的方便,建立直角坐标系时,横轴和纵轴上的单位长度可以取得不一致;2.在观察实际问题的图象时,先从两坐标轴表示的实际意义得到点的坐标的实际意义.然后观察图形,分析两变量的相互关系,给合题意寻找对应的现实情境.布置作业:P41习题6、练习题3.板书设计: 课题: 函数的图象(2)【导学反思】本节亮点:待改进处:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭