欢迎来到天天文库
浏览记录
ID:29371237
大小:107.00 KB
页数:4页
时间:2018-12-19
《高中数学《函数模型及其应用-3.2.2函数模型的应用实例》说课稿2 新人教a版必修1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.2.2函数模型的应用实例(2)从容说课本节课是在上一节课的基础上进一步研究函数模型的应用,让学生不仅能够应用已知的函数模型解决问题,并且还要能够在面临实际问题时,通过有关数据自己建立函数模型来解决实际问题,并加以检验.例1给出的数据具有很强的规律性,它体现的是在理想状态下的数据,通过这些数据所抽象出的函数模型是固定的,相对比较容易,教学时注重引导学生分析问题所提供的数据的特点,再抽象出函数模型;值得注意的是变量的变化范围要符合实际情况.例2中的数据是通过实际测量得到的,它的规律一般不是很明显,主要引导学生通过计算器,画出散点
2、图,然后进行观察比较所作的散点图与哪类函数模型比较接近,从而选择这个函数模型,并注意对模型的修改.通过两节课的几个例子,引导学生回顾问题的特点,以及解决问题的过程与方法,加以总结:根据收集到的数据的特点建立函数模型,解决实际问题的基本过程:三维目标一、知识与技能1.能根据理想状态下的数据特点,建立函数模型解决实际问题.2.能利用计算器,通过表格画出散点图,进行比较选择函数模型,并能加以修改.3.根据例题的解决方法总结出“根据收集到的数据特点建立函数模型,解决实际问题的基本方法”.二、过程与方法1.对于理想状态下的数据特点,引导学
3、生根据它的实际意义抽象出函数模型,并注意变量的变化范围.2.针对实际测量得到的数据利用计算器,画出散点图,比较抽象出函数模型,这里将学生分成几组,分别从不同的数据来计算出函数模型的参变量,通过比较以获得更精确的函数模型.三、情感态度与价值观通过对函数模型在实际问题中的应用举例,有助于学生体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,有助于激发学生学习数学的兴趣,发展学生的创新精神和实践能力.教学重点根据例题的解决方法总结出“根据收集到的数据特点建立函数模型,解决实际问题的基本方法”.教学难点对抽象出的
4、函数模型与根据实际数据画出的散点图进行比较,并加以修改.教具准备多媒体课件、投影仪、计数器.教学过程一、创设情景,引入新课师:上一节课我们研究了一些简单函数模型的应用,但是我们不仅要能够应用已知的函数模型解决问题,而且还要能够在面临实际问题时,通过收集到数据自己建立函数模型来解决实际问题.本节课主要通过两个具体的实例去感受如何收集数据,建立适当的函数模型,解决实际问题,同时研究总结它的基本过程.二、例题剖析【例1】某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元.销售单价与日均销售量的关系如下表所示.销
5、售单价/元6789101112日均销售量/桶480440400360320280240请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?师:根据上表,我们发现,表中的数据具有很强的规律性,具体体现在哪里.这张表反映了销售单价与日均销售量的什么关系?获得的利润指的是什么?生:当销售单价每增加1元,日均销售量就减少40桶,获得利润=日均销售利润-日固定成本(200).解:设在进价基础上增加x元后,日均销售利润为y元,在此情况下的日均销售量就为480-40(x-1)=520-40x(桶).(在实际问题中应注意变量的变化范围)
6、由x>0,且520-40x>00<x<13.所以y=(520-40x)x-200=-40x2+520x-200(0<x<1).易知当x=6.5时,y有最大值.所以,只需将销售单价定为11.5元,就可获得最大的利润.从例1中的数据可以看出它的变化是很有规律性的,它体现的是一种理想状态下的数据,对于这类问题抽象出函数模型比较容易,而且列出的函数模型应该是固定的,但是在现实生活中,一般都是通过实际测量所得数据解决实际问题,它的规律一般不是很明显,我们必须通过计算器加以解决.【例2】某地区不同身高的未成年男性的体重平均值如下表.身高/c
7、m60708090100110体重/kg6.137.909.9912.1515.0217.50身高/cm120130140150160170体重/kg20.9226.8631.1138.8547.2555.05(1)根据上表提供的数据,能否建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重ykg与身高xcm的函数关系?试写出这个函数模型的解析式.(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm,体重为78kg的在校男生的体重是否正常?分析:这里只给了通过测量
8、得到的统计数据表,要想由这些数据直接发现函数模型是困难的.师:请同学们根据这些数据画出散点图,再进行观察和思考,所作的散点图与已知的哪一个函数图象最接近,从而选择函数模型.通过散点图,发现指数型函数y=a·bx的图象可能与散点图的吻合较好,而函数y=a·bx中只
此文档下载收益归作者所有