高中数学 3.3二元一次不等式(组)与简单的线性规划问题教案(4) 新人教a版必修5

高中数学 3.3二元一次不等式(组)与简单的线性规划问题教案(4) 新人教a版必修5

ID:29368317

大小:714.50 KB

页数:10页

时间:2018-12-19

高中数学 3.3二元一次不等式(组)与简单的线性规划问题教案(4) 新人教a版必修5_第1页
高中数学 3.3二元一次不等式(组)与简单的线性规划问题教案(4) 新人教a版必修5_第2页
高中数学 3.3二元一次不等式(组)与简单的线性规划问题教案(4) 新人教a版必修5_第3页
高中数学 3.3二元一次不等式(组)与简单的线性规划问题教案(4) 新人教a版必修5_第4页
高中数学 3.3二元一次不等式(组)与简单的线性规划问题教案(4) 新人教a版必修5_第5页
资源描述:

《高中数学 3.3二元一次不等式(组)与简单的线性规划问题教案(4) 新人教a版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、二元一次不等式组与简单的线性规划问题【知识网络】1、二元一次不等式组以及可化成二元一次不等式组的不等式的解法;2、作二元一次不等式组表示的平面区域,会求最值;3、线性规划的实际问题和其中的整点问题。【典型例题】例1:(1)已知点P(x0,y0)和点A(1,2)在直线的异侧,则()A.B.0C.D.答案:D。解析:将(1,2)代入得小于0,则。(2)满足的整点的点(x,y)的个数是()A.5B.8C.12D.13答案:D。解析:作出图形找整点即可。(3)不等式(x-2y+1)(x+y-3)≤0表示的平面区域是()答案:C。解析:原不等式等价于两不等式表示的平面区域合并起来即是原不等式表

2、示的平面区域.(4)设实数x,y满足,则的最大值为.答案:。解析:过点时,有最大值。(5)已知,求的取值范围.答案:。解析:过点时有最小值5,过点(3,1)时有最大值10。例2:试求由不等式y≤2及

3、x

4、≤y≤

5、x

6、+1所表示的平面区域的面积大小.答案:解:原不等式组可化为如下两个不等式组:①或②上述两个不等式组所表示的平面区域为如图所示的阴影部分.它所围成的面积S=×4×2-×2×1=3.例3:已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.(Ⅰ)求函数g(x)的解析式;(Ⅱ)若h(x)=g(x)-f(x)+1在[-1,1]上是增函数,求实数的取值范围。答案:

7、(Ⅰ)设函数的图象上任意一点关于原点的对称点为,则∵点在函数的图象上∴(Ⅱ)①②ⅰ)ⅱ)例4:要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:今需要A、B、C三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数量少?答案::设需截第一种钢板x张,第二种钢板y张,则且x,y都是整数.求目标函数z=x+y取得最小值时的x,y的值.如图,当x=3,y=9或x=4,y=8时,z取得最小值.∴需截第一种钢板3张,第二种钢板9张或第一种钢板4张,第二种钢板8张时,可得所需三种规格成品,且使所用钢板张

8、数最少.【课内练习】1.双曲线的两条渐近线及过(3,0)且平行其渐近线的一条直线与x=3围成一个三角形区域,表示该区域的不等式组是()A、B、C、D、答案:A。解析:双曲线的两条渐近线方程为,过(3,0)且平行于的直线是和,∴围成的区域为A。2.给出平面区域如下图所示,其中A(5,3),B(1,1),C(1,5),若使目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则a的值是()A.B.C.2D.答案:B。解析:,即。3.设集合是三角形的三边长,则所表示的平面区域(不含边界的阴影部分)是()答案:A。解析:,故选A4.某实验室需购某种化工原料106千克,现在市场上该原料有

9、两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元.在满足需要的条件下,最少要花费元.答案:500。解析:设需第一种原料x袋,第二种原料y袋,,令,∴过(1,3)时元。5.已知,求的最大值为。答案:21。解析:可行域如图,当时,,于是可知可行域内各点均在直线的上方,故,化简得并平行移动,当过C(7,9)时,。6.要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格小钢板的块数如下表所示:类型A规格B规格C规格第一种钢板121第二种钢板113每张钢板的面积,第一种为,第二种为,今需要A、B、C三种规格的成品各12、15、27块,问各截

10、这两种钢板多少张,可得所需三种规格成品,且使所用钢板面积最小?答案:解:设需截第一种钢板张,第二种钢板张,所用钢板面积为,则有作出可行域(如图)目标函数为作出一组平行直线(t为参数).由得由于点不是可行域内的整数点,而在可行域内的整数点中,点(4,8)和点(6,7)使最小,且.答:应截第一种钢板4张,第二种钢板8张,或第一种钢板6张,第二种钢板7张,得所需三种规格的钢板,且使所用的钢板的面积最小.7.已知3≤x≤6,x≤y≤2x,求x+y的最大值和最小值.答案:原不等式组等价于作出其围成的区域如图所示,将直线x+y=0向右上方平行移动,当其经过点(3,1)时取最小值,当其经过(6,1

11、2)时取最大值.∴(x+y)min=3+1=4,(x+y)max=6+12=18.即x+y的最大值和最小值分别是18和4.8.一家饮料厂生产甲、乙两种果汁饮料,甲种饮料的主要配方是每3份李子汁加一份苹果汁,乙种饮料的配方是李子汁和苹果汁各一半.该厂每天能获得的原料是李子汁和苹果汁,又厂方的利润是生产甲种饮料得3元,生产乙种饮料得4元.那么厂方每天生产甲、乙两种饮料各多少,才能获利最大?答案:(1)列表李子汁苹果汁获得利润分配方案甲3/41/43元乙1/21

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。