高中数学 2.3.3平面向量的坐标运算教案 新人教a版必修4

高中数学 2.3.3平面向量的坐标运算教案 新人教a版必修4

ID:29367581

大小:129.50 KB

页数:3页

时间:2018-12-19

高中数学 2.3.3平面向量的坐标运算教案 新人教a版必修4 _第1页
高中数学 2.3.3平面向量的坐标运算教案 新人教a版必修4 _第2页
高中数学 2.3.3平面向量的坐标运算教案 新人教a版必修4 _第3页
资源描述:

《高中数学 2.3.3平面向量的坐标运算教案 新人教a版必修4 》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.3.3平面向量的坐标运算【教学目标】  1.能准确表述向量的加法、减法、实数与向量的积的坐标运算法则,并能进行相关运算,进一步培养学生的运算能力;2.通过学习向量的坐标表示,使学生进一步了解数形结合思想,认识事物之间的相互联系,培养学生辨证思维能力.【教学重难点】教学重点: 平面向量的坐标运算.教学难点: 对平面向量坐标运算的理解.【教学过程】一、〖创设情境〗以前,我们所讲的向量都是用有向线段表示,即几何的方法表示。向量是否可以用代数的方法,比如用坐标来表示呢?如果可能的话,向量的运算就可以通过坐标运算来完成,那么问题的解决肯定要方便的多。因此,我们有

2、必要探究一下这个问题:平面向量的坐标运算。二、〖新知探究〗思考1:设i、j是与x轴、y轴同向的两个单位向量,若设=(x1,y1)=(x2,y2)则=x1i+y1j,=x2i+y2j,根据向量的线性运算性质,向量+,-,λ(λ∈R)如何分别用基底i、j表示?+=(x1+x2)i+(y1+y2)j,-=(x1-x2)i+(y1-y2)j,λ=λx1i+λy1j.思考2:根据向量的坐标表示,向量+,-,λ的坐标分别如何?+=(x1+x2,y1+y2);-=(x1-x2,y1-y2);λ=(λx1,λy1).两个向量和与差的坐标运算法则:两个向量和与差的坐标分别等

3、于这两个向量相应坐标的和与差.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.思考3:已知点A(x1,y1),B(x2,y2),那么向量的坐标如何?结论:一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.思考4:一个向量平移后坐标不变,但起点坐标和终点坐标发生了变化,这是否矛盾呢?结论:1:任意向量的坐标与表示该向量的有向线段的起点、终点的具体位置无关系,只与其相对位置有关。2:当把坐标原点作为向量的起点,这时向量的坐标就是向量终点的坐标.三、〖典型例题〗例1已知=(2,1),=(-3,4),求+,-,3+4的坐标.解:+=(2,1)

4、+(-3,4)=(-1,5),-=(2,1)-(-3,4)=(5,-3),3+4=3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19).点评:利用平面向量的坐标运算法则直接求解。变式训练1:已知,,求,的坐标;例2、已知平行四边形ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(-1,3)(3,4),求顶点D的坐标。解:设点D的坐标为(x,y),即3-x=1,4-y=2解得x=2,y=2所以顶点D的坐标为(2,2).另解:由平行四边形法则可得所以顶点D的坐标为(2,2)点评:考查了向量的坐标与点的坐标之间的联系.变式训练2:已知

5、平面上三点的坐标分别为A(-2,1),B(-1,3),C(3,4),求点D的坐标使这四点构成平行四边形四个顶点。四、〖课堂小结〗本节课主要学习了平面向量的坐标运算法则:(1)两向量和的坐标等于各向量对应坐标的和;(2)两向量差的坐标等于各向量对应坐标的差;(3)实数与向量积的坐标等于原向量的对应坐标乘以该实数;五、〖反馈测评〗1.下列说法正确的有()个(1)向量的坐标即此向量终点的坐标(2)位置不同的向量其坐标可能相同(3)一个向量的坐标等于它的始点坐标减去它的终点坐标(4)相等的向量坐标一定相同A.1B.2C.3D.42.已知A(-1,5)和向量=(2,

6、3),若=3,则点B的坐标为__________。A.(7,4)B.(5,4)C.(7,14)D.(5,14)3.已知点,及,,,求点、、的坐标。〖板书设计〗【作业布置】课本101页1---3T

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。