高中数学 1.1.1 《算法的概念》 教案 (新人教版必修3)

高中数学 1.1.1 《算法的概念》 教案 (新人教版必修3)

ID:29366921

大小:150.00 KB

页数:6页

时间:2018-12-19

高中数学 1.1.1 《算法的概念》 教案 (新人教版必修3)_第1页
高中数学 1.1.1 《算法的概念》 教案 (新人教版必修3)_第2页
高中数学 1.1.1 《算法的概念》 教案 (新人教版必修3)_第3页
高中数学 1.1.1 《算法的概念》 教案 (新人教版必修3)_第4页
高中数学 1.1.1 《算法的概念》 教案 (新人教版必修3)_第5页
资源描述:

《高中数学 1.1.1 《算法的概念》 教案 (新人教版必修3)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.1.1算法的概念一、教学目标:1、知识与技能:(1)了解算法的含义,体会算法的思想。(2)能够用自然语言叙述算法。(3)掌握正确的算法应满足的要求。(4)会写出解线性方程(组)的算法。(5)会写出一个求有限整数序列中的最大值的算法。(6)会应用Scilab求解方程组。2、过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。3、情感态度与价值观:通过本节的学习

2、,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。二、重点与难点:重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。难点:把自然语言转化为算法语言。三、学法与教学用具:学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。2、要使算法尽量简单、步骤尽量少。3、要保证算法正确,且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的,但让计算机去执行“倒一杯水”“替我理发”等则是做不到的。

3、教学用具:电脑,计算器,图形计算器四、教学设想:1、创设情境:算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。但是我们却从小学就开始接触算法,熟悉许多问题的算法。如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。因此,算法其实是重要的数学对象。2、探索研究算法(algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过

4、程。后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。广义地说,算法就是做某一件事的步骤或程序。菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。比如解方程的算法、函数求值的算法、作图的算法,等等。3、例题分析:例1任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定。算法分析:根据质数的定义,很容易设计出下面的步骤:第一步:判断n是否等于2,若n=2,则n是质数;若n>2,则执行第二步。第二步:依次从2至(n-1)

5、检验是不是n的因数,即整除n的数,若有这样的数,则n不是质数;若没有这样的数,则n是质数。这是判断一个大于1的整数n是否为质数的最基本算法。例2用二分法设计一个求议程x2–2=0的近似根的算法。算法分析:回顾二分法解方程的过程,并假设所求近似根与准确解的差的绝对值不超过0.005,则不难设计出以下步骤:第一步:令f(x)=x2–2。因为f(1)<0,f(2)>0,所以设x1=1,x2=2。第二步:令m=(x1+x2)/2,判断f(m)是否为0,若则,则m为所长;若否,则继续判断f(x1)·f(m)大于0还是小于0。第三步:若f(x1)·f(m)>0,则令x1=m;否则

6、,令x2=m。第四步:判断

7、x1–x2

8、<0.005是否成立?若是,则x1、x2之间的任意取值均为满足条件的近似根;若否,则返回第二步。小结:算法具有以下特性:(1)有穷性;(2)确定性;(3)顺序性;(4)不惟一性;(5)普遍性典例剖析:1、基本概念题x-2y=-1,①例3写出解二元一次方程组的算法2x+y=1②解:第一步,②-①×2得5y=3;③第二步,解③得y=3/5;第三步,将y=3/5代入①,得x=1/5学生做一做:对于一般的二元一次方程组来说,上述步骤应该怎样进一步完善?老师评一评:本题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法。

9、下面写出求方程组的解的算法:第一步:②×A1-①×A2,得(A1B2-A2B1)y+A1C2-A2C1=0;③第二步:解③,得;第三步:将代入①,得。此时我们得到了二元一次方程组的求解公式,利用此公司可得到倒2的另一个算法:第一步:取A1=1,B1=-2,C1=1,A2=2,B2=1,C2=-1;第二步:计算与第三步:输出运算结果。可见利用上述算法,更加有利于上机执行与操作。基础知识应用题例4写出一个求有限整数列中的最大值的算法。解:算法如下。S1先假定序列中的第一个整数为“最大值”。S2将序列中的下一个整数值与“最大值”比较,如果它大于此“最大值”

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。