欢迎来到天天文库
浏览记录
ID:28991987
大小:242.50 KB
页数:20页
时间:2018-12-15
《人教版八年级数学上第12章全等三角形单元测试含答案解析初二数学试题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《第12章全等三角形》 一、选择题1.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( )A.3个B.2个C.1个D.0个2.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙3.在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,若证△ABC≌△A′B′C′还要从下列条件中补选一个,错误的选法是( )A.∠B
2、=∠B′B.∠C=∠C′C.BC=B′C′D.AC=A′C′4.如图,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD( )P点到∠AOB两边距离之和.A.小于B.大于C.等于D.不能确定5.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( )A.1个B.2个C.3个D.4个6.有以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等.其中能判断两直角三角形全等的是( )A.
3、①B.②C.③D.①②7.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于( )A.1:1:1B.1:2:3C.2:3:4D.3:4:58.如图所示,在Rt△ABC中,AD是斜边上的高,∠ABC的平分线分别交AD、AC于点F、E,EG⊥BC于G,下列结论正确的是( )A.∠C=∠ABCB.BA=BGC.AE=CED.AF=FD 二、填空题9.如图,Rt△ABC中,直角边是 ,斜边是 .10.如图,点D,E分别在线段AB,AC上,BE,C
4、D相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是 (只需一个即可,图中不能再添加其他点或线).11.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A= °.12.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有 对.13.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带 去玻璃店.14.正方形ABCD中,AC,BD交于O,∠EOF=90°,已知AE=3,CF=4.则S△BEF为 .
5、 三、解答题(共44分)15.已知:如图AC,BD相交于点O,∠A=∠D,AB=CD,求证:△AOB≌△DOC.16.如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.17.如图2,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路到公路的距离相等,且离铁路与公路交叉处B点700米,如果你红方的指挥员,请你在图1所示的作战图上标出蓝方指挥部的位置,并简要说明理由.18.如图,在△ABC中,D是AB上一点,DF交AC于点E,DE=FE,AE=CE,AB与CF有什么位置关系?证明你的结论.19.如图,在△ABC中,D是BC
6、的中点,DE⊥AB于E,DF⊥AC于点F,且BE=CF.求证:AD平分∠BAC.20.八(一)班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;(Ⅱ)如图2,先过B点作AB的垂线BF,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.阅读后回答下列问题:(1)方案(Ⅰ)是否可行?请说明理由;(2)方案
7、(Ⅱ)是否可行?请说明理由;(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是 ;若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立? . 《第12章全等三角形》参考答案与试题解析 一、选择题1.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( )A.3个B.2个C.1个D.0个【考点】全等图形.【专题】常规题型.【分析】根据全等三角形的概念:能够完全重合的图形是全等图形,及全等图形性质:
8、全等图形的对应边、对应角分别相等,分别对每一项进行分析即可得出正确的命题个数.【解答】解:(1)形状相同、大小相等的两个三角形是全等形,而原说法没有指出大小相等这一点,故(1)错误;(2)在两个全等三角形中
此文档下载收益归作者所有