欢迎来到天天文库
浏览记录
ID:28982880
大小:1.88 MB
页数:28页
时间:2018-12-15
《(新课标版)备战2018高考数学二轮复习专题1.2函数与导数教学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题1.2函数与导数一.考场传真1.【2017课标1,理5】函数在单调递减,且为奇函数.若,则满足的的取值范围是A.B.C.D.【答案】D2.【2017课标1,理11】设x、y、z为正数,且,则A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z【答案】D【解析】令,则,,,∴,则,,则,故选D.3.【2017课标II,理11】若是函数的极值点,则的极小值为()A.B.C.D.1【答案】A4.【2017课标3,理15】设函数则满足的x的取值范围是_________.【答案】5.【2017课标3,理11】已知
2、函数有唯一零点,则a=A.B.C.D.1【答案】C【解析】函数的零点满足,设,则,当时,,当时,,函数单调递减,当时,,函数单调递增,当时,函数取得最小值,设,当时,函数取得最小值,若,函数与函数没有交点,当时,时,此时函数和有一个交点,即,解得.故选C.6.【2017课标1,理21】已知函数.(1)讨论的单调性;(2)若有两个零点,求a的取值范围.7.【2017课标II,理】已知函数,且.(1)求;(2)证明:存在唯一的极大值点,且.【解析】(1)的定义域为.设,则,等价于.因为,因,而,得.若,则.当时,,单调递减;当时,,单调递
3、增.所以是的极小值点,故,综上,.(2)由(1)知,.设,则.当时,;当时,,所以在单调递减,在单调递增.又,,,所以在有唯一零点,在有唯一零点1,且当时,;当时,,当时,.因为,所以是的唯一极大值点.由得,故.由得.因为是在(0,1)的最大值点,由,得.所以.8.【2017课标3,理21】已知函数.(1)若,求a的值;(2)设m为整数,且对于任意正整数n,求m的最小值.二.高考研究【考纲解读】1.考纲要求1.函数:(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的
4、方法(如图像法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用(函数分段不超过三段).(4)理解函数的单调性、最大(小)值及其几何意义;了解函数奇偶性的含义.(5)会运用基本初等函数的图像分析函数的性质.2.指数函数:(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,1/2,1/3的指数函数的图像.(4)体会指数函数是一类重要的函数模型.3.对数函数:(1)理解对数的概念及其运算性
5、质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,1/2的对数函数的图像.(3)体会对数函数是一类重要的函数模型;(4)了解指数函数与对数函数()互为反函数.4.幂函数:(1)了解幂函数的概念.(2)结合函数的图像,了解它们的变化情况.5.函数与方程:结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.6.函数模型及其应用:(1)了解指数函数、对数函数、幂函数的增长特征,结合具体实例
6、体会直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.7.导数及其应用:(1)了解导数概念的实际背景.(2)通过函数图像直观理解导数的几何意义.(3)根据导数的定义求函数(c为常数)的导数.(4)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.常见基本初等函数的导数公式和常用导数运算公式:(C为常数);,n∈N+;;;;(a>0,且a≠1
7、);;(a>0,且a≠1).常用的导数运算法则:法则1 .法则2.法则3.(5)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(6)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).(7)会用导数解决某些实际问题..(8)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.(9)了解微积分基本定理的含义.2.命题规律高考对函数的考查以选择或填
8、空题形式呈现,考查对数函数、含无理式的函数的定义域;以二次函数的图象与性质为主,结合函数的性质综合考查分析与解决问题的能力,函数的图象与性质历来是高考的重点,也是热点,对于函数图象的考查体现在两个方面:一是识图;二是用图
此文档下载收益归作者所有