欢迎来到天天文库
浏览记录
ID:28758613
大小:477.00 KB
页数:20页
时间:2018-12-14
《2014年中考数学二轮复习真题演练:探究型问题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二轮复习真题演练探究型问题一、选择题1.(2013•永州)如图,下列条件中能判定直线l1∥l2的是( )A.∠1=∠2B.∠1=∠5C.∠1+∠3=180°D.∠3=∠51.C2.(2013•安顺)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )A.∠A=∠CB.AD=CBC.BE=DFD.AD∥BC2.B3.(2013•湘潭)如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为( )A.BD=CEB.AD=AEC.DA=DED.BE=CD3
2、.C二、填空题4.(2013•娄底)如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD(添加一个条件即可).4.∠B=∠C或AE=AD5.(2013•白银)如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为AC=CD.(答案不唯一,只需填一个)5.AC=CD6.(2013•上海)如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AC=DF.(只需写一个,不添加辅助线)6.AC=DF7.(2013•黑龙江)如图所示,平行四
3、边形ABCD的对角线AC、BD相交于点O,试添加一个条件:AD=DC,使得平行四边形ABCD为菱形.7.AD=DC8.(2013•西城区一模)在平面直角坐标系xOy中,有一只电子青蛙在点A(1,0)处.第一次,它从点A先向右跳跃1个单位,再向上跳跃1个单位到达点A1;第二次,它从点A1先向左跳跃2个单位,再向下跳跃2个单位到达点A2;第三次,它从点A2先向右跳跃3个单位,再向上跳跃3个单位到达点A3;第四次,它从点A3先向左跳跃4个单位,再向下跳跃4个单位到达点A4;依此规律进行,点A6的坐标为(-2-3);若点An的坐标为(2013,2012),则n=4023.8.(-2
4、-3),40239.(2013•湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是-1),A92的坐标是(31,-31).9.(0,),(31,-31)10.(2013•绍兴)如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是12°.10.12°三、解答题11.(2013•茂名)如图,在▱ABCD中,点E是AB边的中点
5、,DE与CB的延长线交于点F.(1)求证:△ADE≌△BFE;(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.11.解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF,∴∠1=∠2.∵点E是AB边的中点,∴AE=BE.∵在△ADE与△BFE中,,∴△ADE≌△BFE(AAS);(2)解:CE⊥DF.理由如下:如图,连接CE.由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠2.∵DF平分∠ADC,∴∠1=∠3,∴∠3=∠2,∴CD=CF,∴CE⊥DF.12.(2013•白银)
6、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.12.解:(1)BD=CD.理由如下:∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD
7、=CD,∴∠ADB=90°,∴▱AFBD是矩形.13.(2013•无锡)如图,四边形ABCD中,对角线AC与BD相交于点O,在①AB∥CD;②AO=CO;③AD=BC中任意选取两个作为条件,“四边形ABCD是平行四边形”为结论构造命题.(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例;(2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)13.(1)以①②作为条件构成的命题是真命题,证明:∵AB∥CD,∴△AOB∽△COD,∴,∵AO=OC,
此文档下载收益归作者所有