一种用于白光LED驱动的电荷泵电路的设计方案.doc

一种用于白光LED驱动的电荷泵电路的设计方案.doc

ID:27821640

大小:138.50 KB

页数:5页

时间:2018-12-06

一种用于白光LED驱动的电荷泵电路的设计方案.doc_第1页
一种用于白光LED驱动的电荷泵电路的设计方案.doc_第2页
一种用于白光LED驱动的电荷泵电路的设计方案.doc_第3页
一种用于白光LED驱动的电荷泵电路的设计方案.doc_第4页
一种用于白光LED驱动的电荷泵电路的设计方案.doc_第5页
资源描述:

《一种用于白光LED驱动的电荷泵电路的设计方案.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、一种用于白光LED驱动的电荷泵电路的设计方案  0引言  目前用于白光驱动的升压型电路主要有电感型DC-DC电路和电荷泵电路。电感型DC-DC电路存在EMI等问题,而电荷泵电路结构简单,EMI较小,得到了广泛的应用。  白光LED驱动的电荷泵主要有两种类型:电压模式和电流模式。相对于电压模式可能造成每个LED亮度不匹配的缺点,电流模式每路单独输出恒定电流,使亮度可以较好地匹配,而且不需要外围平衡电阻,大大节省了空间。  本文所提出的用于白光LED驱动的电流型电荷泵电路的设计方案。该设计方案采用1

2、.5倍压升压,比传统的2倍压升压模式提高了效率,并采用数字调光方式,可提供32级灰度输出,满足不同场合的要求。系统结构如图1所示。主要可分为以下部分:带隙基准电路,软启动电路,振荡器,1.5倍压电荷泵,数字调光模块。当EN/SET端输入高电平时,芯片启动,Vin经过1.5倍压电荷泵升压,使输出电压稳定在5V,如果EN/SET端输入一串脉冲后置高电平,则数字调光模块可记录下脉冲个数,然后转换成不同的输出电流,实现调光功能。    11.5倍压电荷泵原理  1.1基本原理  1.5倍压电荷泵原理如图

3、2所示,其基本控制思想如下:OSC通过驱动电路,控制S1~S7的导通与关断。时序如下:第一时刻,开通S1、S4、S6,Vin对电容C1充电,C2短接,使VC1=V1,VC2=0;第二时刻,关闭S1、S4、S6,开通S2、S3、S5、S7,C1对C2充电,使VC1=VC2=1/2V1,最后加上V1对C3充电,周而复始,VCUT经过电阻分压,与基准电压做比较,控制上端MOS管的导通电阻,改变充电回路的RC充电常数,最终使输出稳定在5V.图3为控制脉冲时序图,其中D1为S1的驱动信号,低有效;D2为S

4、4、S6的驱动信号,高有效;D3为S2、S3、S5、S7的驱动信号,低有效。为了防止时钟馈通,驱动电路中包含了非交叠时钟电路。      1.2实际电路设计  整个开关管网络由5个PMOS管S1、S2、S3、S5、S7及2个NMOS管S4、S6组成,如图4所示。以P管S1和N管S4为例,计算开关管的宽长比。根据版图设计规则的要求,单个管子的宽长比W/L可以设定为2.8μm/0.6μm.假设S1的宽长比为x(W/L),S4的宽长比为y(W/L)。本设计采用CSMC0.6μm工艺,根据工艺及设计要求

5、,V1=3.3V,unCOX=50μA/V2VTHN=0.7V,

6、VTHP

7、=1V,2up=un,因为    其它管子的宽长比也可以同理求得。由于流过开关管的电流比较大,开关管的宽长比很大,一般采用晶体管并联的形式,在版图上通常以waffle的结构实现。  如果开关管的衬底未与源端相接,则会产生衬底偏置效应,使开关管产生阈值损失,导致电荷泵电压无法升至设定值。如图4所示,开关管S1、S3、S4、S5、S6的源漏端能比较容易的判断出来,S2、S7的两端电压高低未定,因此如果处理不妥当,会引起衬底偏

8、置效应,本设计采用了一种方式,比较好地解决了这个问题。通过一个比较器对V1和Vout进行比较,如果Vout》V1,则让S2、S7的衬底端接Vout端,如果Vout

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。