资源描述:
《人教版初二上全等三角形培优练习题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、全等三角形培优竞赛训练题1、已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)直接写出线段EG与CG的数量关系;(2)将图1中△BEF绕B点逆时针旋转45º,如图2所示,取DF中点G,连接EG,CG.你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?FBACE图3DFBADCEG图2FBADCEG图12、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.,且EF交正
2、方形外角的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.ADF
3、CGEB图1ADFCGEB图2ADFCGEB图363、已知中,为边的中点,绕点旋转,它的两边分别交、(或它们的延长线)于、当绕点旋转到于时(如图1),易证当绕点旋转到不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,、、又有怎样的数量关系?请写出你的猜想,不需证明.AECFBD图1图3ADFECBADBCE图2F4、在中,将绕点顺时针旋转角得交于点,分别交于两点.(1)如图1,观察并猜想,在旋转过程中,线段与有怎样的数量关系?并证明你的结论;ADBECFADBECF(2)如图2,当时,试判断四边形的形状,并说明理由;(3)在(2)的情况下,
4、求的长.65、如图9,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.(1)当把△ADE绕A点旋转到图10的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;(4分)(2)当△ADE绕A点旋转到图11的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.(6分)图9图10图11图86、点C为线段AB上一点,△ACM,△CBN都是等边三角形,线段AN,MC交于点E,BM,CN交于点F。求证:(1)AN=MB.(2)△CEF
5、为等边三角形。(3)将△ACM绕点C按逆时针方向旋转一定角度,其他条件不变,(1)中的结论是否依然成立?(只回答不证明),(4)AN与BM相交所夹锐角是否发生变化,(只回答不证明)。67、问题:已知中,,点是内的一点,且,.探究与度数的比值.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1)当时,依问题中的条件补全右图.观察图形,与得数量关系为________;当退出时,可进一步推出的度数为_______;可得到与度数的比值为_________.(2)当时,请你画出图形,研究与度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.8
6、、直线CD经过的顶点C,CA=CB.E、F分别是直线CD上两点,且.(1)若直线CD经过的内部,且E、F在射线CD上,请解决下面两个问题:①如图1,若,则(填“”,“”或“”号);②如图2,若,若使①中的结论仍然成立,则与应满足的关系是;(2)如图3,若直线CD经过的外部,,请探究EF、与BE、AF三条线段的数量关系,并给予证明.ABCEFDDABCEFADFCEB图1图2图369、(1)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF.第23题图1(2)如图2,在正方形ABCD中,点E,H,F,G分别在边AB
7、,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.求GH的长.第23题图2(3)已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.直接写出下列两题的答案:①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).第23题图4第23题图310、如图,直角梯形ABCD中,,,且,过点D作,交的平分线于点E,连接BE.(1)求证:;(2)将绕点C,顺时针旋转得