大数据入门级学习

大数据入门级学习

ID:27367278

大小:25.24 KB

页数:12页

时间:2018-12-02

大数据入门级学习_第1页
大数据入门级学习_第2页
大数据入门级学习_第3页
大数据入门级学习_第4页
大数据入门级学习_第5页
资源描述:

《大数据入门级学习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、数据科学怎样进行大数据的入门级学习?数据科学并没有一个独立的学科体系,统计学,机器学习,数据挖掘,数据库,分布式计算,云计算,信息可视化等技术或方法来对付数据。但从狭义上来看,我认为数据科学就是解决三个问题:1.datapre-processing;(数据预处理)2.datainterpretation;(数据解读)3.datamodelingandanalysis.(数据建模与分析)这也就是我们做数据工作的三个大步骤:1.原始数据要经过一连串收集、提取、清洗、整理等等的预处理过程,才能形成高质量的数据;2.我们想看看数据“长什么样”

2、,有什么特点和规律;3.按照自己的需要,比如要对数据贴标签分类,或者预测,或者想要从大量复杂的数据中提取有价值的且不易发现的信息,都要对数据建模,得到output。这三个步骤未必严谨,每个大步骤下面可能依问题的不同也会有不同的小步骤,但按我这几年的经验来看,按照这个大思路走,数据一般不会做跑偏。这样看来,数据科学其实就是门复合型的技术,既然是技术就从编程语言谈起吧,为了简练,只说说R和Python。但既然是荐数据科学方面的书,我这里就不提R/Python编程基础之类的书了,直接上跟数据科学相关的。Rprogramming如果只是想初步

3、了解一下R语言已经R在数据分析方面的应用,那不妨就看看这两本:Rinaction:我的R语言大数据101。其实对于一个没有任何编程基础的人来说,一开始就学这本书,学习曲线可能会比较陡峭。但如果配合上一些辅助材料,如官方发布的Rbasics(http://cran.r-project.org/doc/contrib/usingR.pdf),stackoverflow上有tag-R的问题集(Newest‘r’Questions),遇到复杂的问题可在上面搜索,总会找到解决方案的。这样一来,用这本书拿来入门学习也问题不大。而且这本书作者写得也

4、比较轻松,紧贴实战。DataanalysisandgraphicsusingR:使用R语言做数据分析的入门书。这本书的特点也是紧贴实战,没有过多地讲解统计学理论,所以喜欢通过情境应用来学习的人应该会喜欢这本入门书。而且这本书可读性比较强,也就是说哪怕你手头没电脑写不了代码,有事没事拿出这本书翻一翻,也能读得进去。但如果你先用R来从事实实在在的数据工作,那么上面两本恐怕不够,还需要这些:ModernappliedstatisticswithS:这本书里统计学的理论就讲得比较多了,好处就是你可以用一本书既复习了统计学,又学了R语言。(S/

5、Splus和R的关系就类似于Unix和Linux,所以用S教程学习R,一点问题都没有)DatamanipulationwithR:这本书实务性很强,它教给你怎么从不同格式的原始数据文件里读取、清洗、转换、整合成高质量的数据。当然和任何一本注重实战的书一样,本书也有丰富的真实数据或模拟数据供你练习。对于真正从事数据处理工作的人来说,这本书的内容非常重要,因为对于任何研究,一项熟练的数据预处理技能可以帮你节省大量的时间和精力。否则,你的研究总是要等待你的数据。RGraphicsCookbook:想用R做可视化,就用这本书吧。150多个re

6、cipes,足以帮你应付绝大多数类型的数据。以我现在极业余的可视化操作水平来看,R是最容易做出最漂亮的图表的工具了。AnintroductiontostatisticallearningwithapplicationinR:这本书算是著名的theelementofstatisticallearning的姊妹篇,后者更注重统计(机器)学习的模型和算法,而前者所涉及的模型和算法原没有后者全面或深入,但却是用R来学习和应用机器学习的很好的入口。AhandbookofstatisticalanalysisusingR:这本书内容同样非常扎实,

7、很多统计学的学生就是用这本书来学习用R来进行统计建模的。PythonThinkPython,ThinkStats,ThinkBayes:这是AllenB.Downey写的著名的ThinkXseries三大卷。其实是三本精致的小册子,如果想快速地掌握Python在统计方面的操作,好好阅读这三本书,认真做习题,答案链接在书里有。这三本书学通了,就可以上手用Python进行基本的统计建模了。PythonForDataAnalysis:作者是pandas的主要开发者,也正是Pandas使Python能够像R一样拥有dataframe的功能,能

8、够处理结构比较复杂的数据。这本书其实analysis讲得不多,说成数据处理应该更合适。掌握了这本书,处理各种糟心的数据就问题不大了。IntroductiontoPythonforEconometrics,Statisti

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。