资源描述:
《直线与平面平行的性质.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.2.3 直线与平面平行的性质【选题明细表】知识点、方法题号线面平行性质定理的理解1,2线面平行性质定理的应用3,4,5,8判定、性质综合应用6,7,9,10,111.若一条直线和一个平面平行,夹在直线和平面间的两条线段相等,那么这两条线段所在直线的位置关系是( D )(A)平行(B)相交(C)异面(D)平行、相交或异面2.已知两条相交直线a,b,a∥平面α,则b与α的位置关系是( D )(A)b⊂平面α(B)b∥α或b⊂α(C)b∥平面α(D)b与平面α相交或b∥平面α解析:b与a相交,可确定一个平面,记为
2、β,若β与α平行,则b∥α;若β与α不平行,则b与α相交.3.(2018·北京西城期末)设α,β是两个不同的平面,l是一条直线,若l∥α,l∥β,α∩β=m,则( A )(A)l与m平行(B)l与m相交(C)l与m异面(D)l与m垂直解析:如图所示,α,β是两个不同的平面,l是一条直线,当l∥α,l∥β,且α∩β=m时,l∥m.故选A.4.如图,四棱锥PABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,则( B )(A)MN∥PD(B)MN∥PA(C)MN∥AD(D)以上均有可能解析:因为MN∥平面
3、PAD,平面PAC∩平面PAD=PA,MN⊂平面PAC,所以MN∥PA.5.如图所示,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于E,交DP于F.则四边形BCFE的形状为 . 解析:因为BC∥平面PAD,平面BCFE∩平面PAD=EF,所以EF∥BC,又EF≠AD,AD=BC,所以四边形BCFE为梯形.答案:梯形6.证明:如果一条直线和两个相交的平面都平行,那么这条直线与这两个平面的交线平行.证明:已知:直线a∥平面α,直线a∥平面β,且α∩β=b.求证:a∥b.如图,经过直线a作
4、平面γ,δ,使γ∩α=c,δ∩β=d.由题意可知a∥α,a⊂γ,γ∩α=c,所以a∥c,同理a∥d,所以c∥d,又因为d⊂β,a⊄β,所以c⊄β,因此c∥β.又c⊂α,α∩β=b,所以c∥b.因为a∥c,由基本性质4知a∥b.7.(2018·合肥二模)若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有( C )(A)0条(B)1条(C)2条(D)1条或2条解析:如图所示,四边形EFGH为平行四边形,则EF∥GH.因为EF⊄平面BCD,GH⊂平面BCD,所以EF∥平面BCD.因为EF⊂平面ACD,
5、平面BCD∩平面ACD=CD,所以EF∥CD,所以CD∥平面EFGH.同理AB∥平面EFGH.故选C.8.在三棱锥SABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H,点D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为( A )(A)(B)(C)45(D)45解析:取AC的中点G,连接SG,BG.易知SG⊥AC,BG⊥AC,故AC⊥平面SGB,所以AC⊥SB.因为SB∥平面DEFH,SB⊂平面SAB,平面
6、SAB∩平面DEFH=HD,则SB∥HD.同理SB∥FE.又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,从而得HF∥DE,HF=DE,所以四边形DEFH为平行四边形.又AC⊥SB,SB∥HD,DE∥AC,所以DE⊥HD,所以四边形DEFH为矩形,其面积S=HF·HD=(AC)·(SB)=.9.如图,四边形ABCD是空间四边形,E,F,G,H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,则当四边形EFGH是菱形时,AE∶EB= . 解析:因为AC
7、∥平面EFGH,所以EF∥AC,HG∥AC.所以EF=HG=·m.同理,EH=FG=·n.因为四边形EFGH是菱形,所以·m=·n,所以AE∶EB=m∶n.答案:m∶n10.如图,在长方体ABCDA1B1C1D1中,点P∈BB1(P不与B,B1重合).PA∩A1B=M,PC∩BC1=N.求证:MN∥平面ABCD.证明:如图,连接AC,A1C1,在长方体ABCDA1B1C1D1中,AA1∥CC1,且AA1=CC1,所以四边形ACC1A1是平行四边形.所以AC∥A1C1.因为AC⊄平面A1BC1,A1C1⊂平面A1
8、BC1,所以AC∥平面A1BC1.因为AC⊂平面PAC,平面A1BC1∩平面PAC=MN,所以AC∥MN.因为MN⊄平面ABCD,AC⊂平面ABCD,所以MN∥平面ABCD.11.在空间四边形ABCD中,AC,BD为其对角线,E,F,G,H分别为AC,BC,BD,AD上的点,若四边形EFGH为平行四边形,求证:AB∥平面EFGH.证明:因为四边形EFGH为平行四边形,所以EF∥GH.因