欢迎来到天天文库
浏览记录
ID:26879248
大小:71.00 KB
页数:13页
时间:2018-11-29
《2018考研数学一考试大纲和解读》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、WORD资料.可编辑2018年考研数学一考试大纲及其解读2017-09-18 考研狗一起来奋斗考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学 约56%线性代数 约22%概率论与数理统计 约22%四、试卷题型结构单选题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24
2、分解答题(包括证明题) 9小题,共94分1高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:, 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问
3、题的函数关系.函数——对任意自变量,只有唯一因变量与之对应(知道就行)2.了解函数的有界性、单调性、周期性和奇偶性.专业技术.整理分享WORD资料.可编辑一般性了解(知道就行),有界性(连续函数必有界),单调性、周期性、奇偶性后面几章会用到3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.会求分段函数的复合函数,知道反函数的基本性质(与原函数对应关系相反),隐函数了解概念即可(非显函数)4.掌握基本初等函数的性质及其图形,了解初等函数的概念.要求同考纲,初等函数在定义域内均连续5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限
4、、右极限之间的关系.了解(知道)极限定义,相关证明没有要求,左右极限需要掌握6.掌握极限的性质及四则运算法则.唯一性和保号性(重要),熟练掌握四则运算法则7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.掌握用夹逼定理(适用于函数和数列)和单调有界定理(适用于数列)求极限8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.知道什么是无穷小量(趋于0)、无穷大量(趋于正负无穷),掌握无穷小量的比较方法(作比,理解低阶、同阶、等价和高阶无穷小),熟练掌握用等价无穷小求极限(只适用于因式)9.理解函数连
5、续性的概念(含左连续与右连续),会判别函数间断点的类型.掌握连续判断、间断点类型及其判断10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.熟练掌握并会使用有界性(闭区间连续函数必有界)、最值定理、零点定理和介值定理解题2二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数一阶微分形式的不变性 微分中值
6、定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.专业技术.整理分享WORD资料.可编辑导数定义式必须熟练掌握并会使用,其他要求同上(会计算)2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一
7、阶微分形式的不变性,会求函数的微分.尽可能掌握一阶微分形式不变性并会用其解题,其他要求同上3.了解高阶导数的概念,会求简单函数的高阶导数.知道什么是高阶导数,会用莱布尼茨公式求高阶导数4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.要求同上,特别注意分段点的导数(用定义式)5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.熟练掌握并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理、柯西中值定理和泰勒(Taylor)定理,前三
8、个定理证明也需要掌握6.掌握用洛必达法则求未定式极限
此文档下载收益归作者所有