欢迎来到天天文库
浏览记录
ID:25815274
大小:1.11 MB
页数:10页
时间:2018-11-22
《辽宁高考文科数学试题含答案(Word版).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、2014年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.1.已知全集,则集合()。A.B.C.D.2.设复数z满足,则()。A.B.C.D.3.已知,,则()。A.B.C.D.4.已知m,n表示两条不同直线,表示平面,下列说法正确的是()。A.若则B.若,,则C.若,,则D.若,,则5.设是非零向量,已知命题P:若,,则;命题q:若,,则,则下列命题中真命题是()。A.B.C.D.6.若将一个质点随机投入如图所示的长方形ABCD
2、中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()。A.B.C.D.7.某几何体三视图如图所示,则该几何体的体积为()。A.B.C.D.俯视图8.已知点在抛物线C:的准线上,记C的焦点为F,则直线AF的斜率为()A.B.-1C.D.9.设等差数列的公差为d,若数列为递减数列,则().A.B.C.D.10.已知为偶函数,当时,,则不等式的解集为()A.B.C.D.11.将函数的图象向右平移个单位长度,所得图象对应的函数().A.在区间上单调递减B.在区间上单调递增C.在区间上单调递减D.在区间上单调
3、递增12.当时,不等式恒成立,则实数a的取值范围是()A.B.C.D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.执行右侧的程序框图,若输入,则输出.14.已知x,y满足条件,则目标函数的最大值为.15.已知椭圆C:,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则.16.对于,当非零实数a,b满足,且使最大时,的最小值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)(本小题满分12分)
4、在中,内角A,B,C的对边,且,已知,,,求:(1)和的值;(2)的值.18.(本小题满分12分)某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品合计南方学生602080北方学生101020合计7030100(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.0.1000.0500.0
5、102.7063.8416.635附:19.(本小题满分12分)如图,和所在平面互相垂直,且,,E、F、G分别为AC、DC、AD的中点.(1)求证:平面BCG;(2)求三棱锥D-BCG的体积.附:椎体的体积公式,其中S为底面面积,h为高.20.(本小题满分12分)圆的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图).(1)求点P的坐标;(2)焦点在x轴上的椭圆C过点P,且与直线交于A,B两点,若的面积为2,求C的标准方程.21.(本小题满分12分)已知函数,.证明:(1)存在唯一,使
6、;(2)存在唯一,使,且对(1)中的.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图,EP交圆于E、C两点,PD切圆于D,G为CE上一点且,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(1)求证:AB为圆的直径;(2)若AC=BD,求证:AB=ED.23.(本小题满分10分)选修4-4:坐标系与参数方程将圆上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
7、(1)写出C的参数方程;(2)设直线与C的交点为,以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,求过线段的中点且与垂直的直线的极坐标方程.24.(本小题满分10分)选修4-5:不等式选讲设函数,,记的解集为M,的解集为N.(1)求M;(2)当时,证明:。2014年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)试题参考答案一、选择题:(1)D(2)A(3)D(4)B(5)A(6)B(7)C(8)C(9)D(10)A(11)B(12)C二、填空题:(13)20(14)18(15)12(16)-1三、解答
8、题:(17)解:(Ⅰ)由得。又,所以。由余弦定理得。又因为,所以。解得或。因为,所以。(Ⅱ)在中,。由正弦定理得,所以。因为,所以角C为锐角。。。(22)(Ⅰ)证明:因为PD=PG,所以。由于PD为切线,所以由弦切角定理得。由对顶角相等可知。所以,从而。由于,所以。所以AB是直径。(Ⅱ)连接BC和DC。由于AB是直径,所以。在与中,AB=BA,
此文档下载收益归作者所有