垂直平分线和角平分线典型题

垂直平分线和角平分线典型题

ID:24914994

大小:334.00 KB

页数:6页

时间:2018-11-17

垂直平分线和角平分线典型题_第1页
垂直平分线和角平分线典型题_第2页
垂直平分线和角平分线典型题_第3页
垂直平分线和角平分线典型题_第4页
垂直平分线和角平分线典型题_第5页
资源描述:

《垂直平分线和角平分线典型题》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、线段的垂直平分线与角平分线(1)知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m与线段AB垂直相交于点D,且AD=BD,若点C在直线m上,则AC=BC.定理的作用:证明两条线段相等(2)线段关于它的垂直平分线对称.课堂笔记:2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m与线段AB垂直相交于点D,且AD=BD,若AC=BC,则点C在直线m上.定

2、理的作用:证明一个点在某线段的垂直平分线上.课堂笔记:3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线分别是△ABC三边AB、BC、CA的垂直平分线,则直线相交于一点O,且OA=OB=OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它

3、三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.经典例题:例1 如图1,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于(  )  A.6cm   B.8cmC.10cm  D.12cm课堂笔记:B针对性练习:AD已知:1)如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,

4、如果△EBC的周长是24cm,那么BC=2)如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,如果BC=8cm,那么△EBC的周长是E3)如图,AB=AC,AB的垂直平分线交AB于点D,交AC于点E,如果∠A=28度,那么∠EBC是CB例2.已知:AB=AC,DB=DC,E是AD上一点,求证:BE=CE。课堂笔记:B针对性练习:已知:在△ABC中,ON是AB的垂直平分线,OA=OC求证:点O在BC的垂直平分线NAOCB例3.在△ABC中,AB=AC,AB的垂直平分线与边AC所在的直线相交所成锐角为50°,△ABC的底角∠B

5、的大小为_______________。课堂笔记:B针对性练习:1.在△ABC中,AB=AC,AB的垂直平分线与AC所在直线相交所得的锐角为40°,则底角B的大小为________________。例4、如图8,已知AD是△ABC的BC边上的高,且∠C=2∠B,求证:BD=AC+CD.证明:在BD上取一点E,使DE=DC,连接AE,则AE=AC,课堂笔记:课堂练习:1.如图,AC=AD,BC=BD,则()A.CD垂直平分ADB.AB垂直平分CDC.CD平分∠ACBD.以上结论均不对2.如果三角形三条边的中垂线的交点在三角形的外部,那么,这个三角

6、形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形3.下列命题中正确的命题有()①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;④点P在线段AB外且PA=PB,过P作直线MN,则MN是线段AB的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线.A.1个B.2个C.3个D.4个4.△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是()A.6cmB.7cmC.8cmD.9cm5.已知如图,在△ABC中,AB=AC,O是△ABC

7、内一点,且OB=OC,求证:AO⊥BC.6.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线MN分别交BC、AB于点M、N.求证:CM=2BM.课后作业:1.如图7,在△ABC中,AC=23,AB的垂直平分线交AB于点D,交BC于点E,△ACE的周长为50,求BC边的长.2.已知:如图所示,∠ACB,∠ADB都是直角,且AC=AD,P是AB上任意一点,求证:CP=DP。线段的垂直平分线与角平分线(2)知识要点详解4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.定理的数学表示:如图4,已知OE是

8、∠AOB的平分线,F是OE上一点,若CF⊥OA于点C,DF⊥OB于点D,则CF=DF.定理的作用:①证明两条线段相等;②用于几何作图问题;角是一个轴对

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。