人教版-八年级-下册数学教学教案

人教版-八年级-下册数学教学教案

ID:23188436

大小:1.74 MB

页数:81页

时间:2018-11-04

人教版-八年级-下册数学教学教案_第1页
人教版-八年级-下册数学教学教案_第2页
人教版-八年级-下册数学教学教案_第3页
人教版-八年级-下册数学教学教案_第4页
人教版-八年级-下册数学教学教案_第5页
资源描述:

《人教版-八年级-下册数学教学教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、

2、16.1.1二次根式教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1.重点:形如(a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“(a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个课本P2的三个思考题:二、探索新知很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是

3、多少?3.当a<0,有意义吗?老师点评:(略)例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.例2.当x是多少时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.解:由3x-1≥0,得:x≥当x≥时,在实数范围内有意义.三、巩固练习教材P5练习1、2、3.四、归纳小结(学生活动,老师点评)本节课要掌握:1.形如(a≥0)的式子叫

4、做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.五、布置作业1.教材P51,2,3,42.选用课时作业设计.

5、16.1.2二次根式(2)教学内容1.(a≥0)是一个非负数;2.()2=a(a≥0).教学目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.教学重难点关键1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.2.难点、关键:用分类思想的方法导出(a≥0)是

6、一个非负数;用探究的方法导出()2=a(a≥0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0时,叫什么?当a<0时,有意义吗?老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)(a≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出(a≥0)是一个非负数.做一做:根据算术平方根的意义填空:()2=_______;()2=_______;()2=______;()2=_______;()2=______;()2=_______;()2=_______.老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2

7、=4.同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以()2=a(a≥0)例1计算

8、1.()22.(3)23.()24.()2分析:我们可以直接利用()2=a(a≥0)的结论解题.解:()2=,(3)2=32·()2=32·5=45,()2=,()2=.三、巩固练习计算下列各式的值:()2()2()2()2(4)2四、归纳小结本节课应掌握:1.(a≥0)是一个非负数;2.()2=a(a≥0);反之:a=()2(a≥0).五、布置作业1.教材P55,6,7,82.选用课时作业设计.16.1二次根式(3)教学内容=a(a≥0)教学目标理解=a(a≥0)并利用它进

9、行计算和化简.通过具体数据的解答,探究=a(a≥0),并利用这个结论解决具体问题.教学重难点关键1.重点:=a(a≥0).2.难点:探究结论.3.关键:讲清a≥0时,=a才成立.教学过程一、复习引入老师口述并板收上两节课的重要内容;1.形如(a≥0)的式子叫做二次根式;2.(a≥0)是一个非负数;3.()2=a(a≥0).那么,我们猜想当a≥0时,=a是否也成立呢?下面我们就来探究这个问题.

10、二、探究新知(学生活动)填空:=_______;=_______;=______;=________;=________;=_______.(老师点评):根据算术平方根的意义,我们可以得到:=2;=0.

11、01;=;=;=0;=.因此,一般地:=a(a≥0)例1化简(1)(2)(3)(4)分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用=a(a≥0)去化简.解:(1)==3(2)==4(3)==5(4)==3三、巩固练习教材P7练习2.四、归纳小结本节课应掌握:=a(a≥0)及其运用,同时理解当a<0时,=-a的应用拓展.五、布置作业1.教材P5习题16

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。