欢迎来到天天文库
浏览记录
ID:23017770
大小:1.04 MB
页数:8页
时间:2018-11-02
《2018年中考数学填空题压轴题集训》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、word资料下载可编辑2018年中考数学选择题压轴题集训1.(2017福建)已知矩形的四个顶点均在反比例函数的图象上,且点A的横坐标是2,则矩形的面积为.2.(2017辽宁沈阳)如图,在矩形中,,将矩形绕点按顺时针方向旋转得到矩形,点落在矩形的边上,连接,则的长是.3.(2017江苏宿迁)如图,矩形的顶点在坐标原点,顶点、分别在、轴的正半轴上,顶点在反比例函数(为常数,,)的图象上,将矩形绕点按逆时针方向旋转得到矩形,若点的对应点恰好落在此反比例函数图象上,则的值是.4.(2017广东广州)如图9,平面直角坐标系中是原点,的顶点的坐标分别是,点把线段三等分,延长分别交于点,连接,则下列结论
2、:①是的中点;②与相似;③四边形的面积是;④;其中正确的结论是.(填写所有正确结论的序号)5.(2017山东日照)如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为 .专业技术资料word资料下载可编辑6.(2017江苏苏州第18题)如图,在矩形中,将绕点按逆时针方向旋转一定角度后,的对应边交边于点.连接、,若,,,则(结果保留根号).7.(2017浙江台州)如图,有一个边长不定的正方形,它的两个相对的顶点分别在边长为1的正六边形一组平行的对边上,另外两个顶点在正六边形内部(包括边界),则正方形
3、边长的取值范围是.8.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.9.如图,在平面直角坐标系中,,反比例函数的图象经过两点,若点的坐标为,则的值为.10.如图,将沿对折,使点落在点处,若,则的长为___.11.如图,在正方形ABCD中,AD=,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.12.如图,在矩形中,,是的中点,于点,则的长是.13.如图,抛物线过点,且对称轴为直线,有下列结论:①;②;③抛物线经过点与点,则;④无论取何值,抛物线都经过
4、同一个点;⑤,其中所有正确的结论是.专业技术资料word资料下载可编辑1.【解析】因为双曲线关于原点对称,又关于直线y=±x对称,矩形既是轴对称图形又是中心对称图形,所以可知点C与点A关于原点对称,点A与点B关于直线y=x对称,由已知可得A(2,0.5),∴C(-2,-0.5)、B(0.5,2),从而可得D(-0.5,-2),继而可得S矩形ABCD=7.5.2.【解析】3.试题分析:设点A的坐标为(a,b),即可得OB=a,OC=b,已知矩形绕点按逆时针方向旋转得到矩形,可得点C、A、B’在一条直线上,点A、C’、B在一条直线上,AC’=a,AB’=b,所以点O’的坐标为)(a+b,b-a
5、),根据反比例函数k的几何意义可得ab=(a+b)(b-a),即可得,解这个以b为未知数的一元二次方程得(舍去),所以所以.4.试题分析:如图,分别过点A、B作于点N,轴于点M在中,是线段AB的三等分点,是OA的中点,故①正确.不是菱形.故和不相似.则②错误;专业技术资料word资料下载可编辑由①得,点G是AB的中点,是的中位线是OB的三等分点,解得:四边形是梯形则③正确,故④错误.综上:①③正确.5.试题分析:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,如图所示:则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠O
6、BA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,在△AOM和△BAN中,,∴△AOM≌△BAN(AAS),∴AM=BN=,OM=AN=,∴OD=+,OD=BD=﹣,∴B(+,﹣),∴双曲线y=(x>0)同时经过点A和B,∴(+)•(﹣)=k,专业技术资料word资料下载可编辑整理得:k2﹣2k﹣4=0,解得:k=1±(负值舍去),∴k=1+.6.【解析】试题分析:连接AG,设DG=x,则在中,,则7.【解析】试题分析:因为AC为对角线,故当AC最小时,正方形边长此时最小.①当A、C都在对边中点时(如下图所示位置时),显然AC取得最小值,∵正
7、六边形的边长为1,∴AC=,∴a2+a2=AC2=.∴a==.②当正方形四个顶点都在正六边形的边上时,a最大(如下图所示).设A′(t,)时,正方形边长最大.∵OB′⊥OA′.∴B′(-,t)设直线MN解析式为:y=kx+b,M(-1,0),N(-,-)(如下图)∴.∴.∴直线MN的解析式为:y=(x+1),将B′(-,t)代入得:t=-.专业技术资料word资料下载可编辑此时正方形边长为A′B′取最大.∴a==3-.故
此文档下载收益归作者所有