欢迎来到天天文库
浏览记录
ID:21664696
大小:1.07 MB
页数:17页
时间:2018-10-23
《人体姿态估计论文解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、Multi-ContextAttentionforHumanPoseEstimation基于多语境注意力机制的人体姿态估计动画组目录1342引言为什么做怎么做总结论文介绍:论文提出了将具有多语境注意力机制的卷积神经网络结合到用于人体姿态估计的端到端框架中。主要方法:1、采用堆叠式沙漏网络,以多种分辨率和各种语义的特征产生注意力图。2、利用条件随机场算法(CRF)对注意力图中相邻区域之间的相关性进行建模。3、进一步结合整体注意力模型,构建全人体全局一致性;结合身体部位注意力模型,对不同身体部位的详细描述。4、设计了新的沙漏残差单元(
2、HRUs)来增加网络的接收范围。模型优点:我们的模型有能力关注从局部显著区域到全局语义一致空间的不同粒度。1卷积神经网络用于人体姿势估计面临的问题(为什么做?)卷积神经网络应用于计算机视觉方向成效显著,但是有以下局限性:1、肢体关联性2、身体自遮挡及被遮挡3、服装影响4、复杂背景影响卷积神经网络面临以上问题时,将不能正确定位每一个身体部位我们观察到,由于背景杂乱和自遮挡,卷积可能会产生错误的估计。卷积神经网络、视觉注意力图和部分注意力图三者对于姿态估计的成效对比:(a)卷及神经网络对人体产生了错误的估计(b)视觉注意力提供模拟人体
3、各部位之间的空间关系,效果显著(c)部分注意力图进一步优化部分位置,效果更为显著输入图像整体注意力图部分注意力图部分位置热力图可视化预测效果构建Multi-contextAttention模型(怎么做?)视觉注意力是人类大脑有效理解场景的重要机制,计算机构建视觉注意力机制来表达复杂语境。主要方法是通过注意力模型生成整体注意力图和部分注意力图,注意力机制优点:1、视觉注意力提供了一种明确的方法来模拟人体各部位之间的空间关系2、部分注意映射可以通过解决重复计数问题来进一步细化部分位置。3、注意力图由注意力模型生成,它依赖于图像特征,并
4、提供一种有原则的方法来聚焦于可变形状的目标区域4、它有助于恢复丢失的身体部分,并将模糊的背景区分开来。这允许增加上下文的多样性,因此上下文区域可以更好地适应每个图像5、而是设计了一种基于条件随机场的新型关注模型,该模型较好地模拟了相邻区域之间的空间相关性。利用条件随机场算法(CRF)对注意力图中相邻区域之间的相关性进行建模21、整体注意力模型堆叠沙漏网络是构建多情境注意力图的理想模型,利用注意力机制指导计算机对多语境的学习,具体方法:在每一个沙漏的堆栈中,特征被汇集到一个非常低的分辨率,然后被向上采样并结合高分辨率的特征。这种结构
5、多次重复,以逐渐捕获更多的全局表示。在每个沙漏堆栈中,我们首先从不同分辨率的特征生成多分辨率注意力图。其次,为多个沙漏栈生成了注意力地图,这使得多语义的注意力图具有不同层次的语义含义。整体注意力模型对遮挡和杂乱的背景有很强的效果,但对不同的身体部位缺乏精确的描述。为了克服这一局限性,我们设计了一种分层次的视觉注意力方案,将整体注意力模型放大到每个主体部分,即部分注意力模型。这有助于精确定位身体部位,2、部分注意力模型3人体姿态估计新思路(怎么做?)空间CRF模型使用条件随机场(CRFs)来模拟空间相关性。为了使其可微,利用均值-场
6、近似方法递归地学习空间相关核。3人体姿态估计新思路(怎么做?)嵌套沙漏网络我们将剩余的单位替换掉,它们沿着侧分支,通过建议的微沙漏单元(HRUs),将多个分辨率的特征组合在一起,得到一个嵌套的沙漏网络,如图所示。通过这种架构,我们可以丰富每个构建块的输出所接收到的信息,从而使整个框架更健壮地进行伸缩。3人体姿态估计新思路(怎么做?)多分辨率注意力机制在每一个沙漏,多分辨率注意力地图由不同尺度的特征生成,如图所示。3人体姿态估计新思路(怎么做?)多分辨率注意力机制然后,将注意力地图组合起来生成精炼的功能,进一步用于生成精细化的注意力
7、地图和进一步完善的功能图。★表示channel-wiseHadamard矩阵产品操作。是精细化的featuremap,是注意力地图重新加权的特征,和f的大小相同。3人体姿态估计新思路(怎么做?)多语义注意力机制不同的栈有不同的语义:低层栈关注局部表示,而更高的栈编码全局表示。因此不同栈产生的注意力地图也可以编码各种语义。下图为一个8层的沙漏网络框架的基本结构。多层沙漏生成多分辨率的注意力地图。将多语义注意力地图应用于每一个沙漏,如堆栈1到堆栈8。在堆栈5到堆栈8中,对局部区域缩放的层次注意机制进行了应用。3人体姿态估计新思路(怎么
8、做?)层级注意力机制下层栈,使用两个整体注意力地图和来编码整个人体的构型。在更高层堆栈中使用一个由粗到细的层级注意力机制来放大局部区域。粗到细的部分注意模型和可视化部分注意图标本4人体姿态估计新思路成效(结果)结果为了研究多上下文注意机制和沙漏残基
此文档下载收益归作者所有