欢迎来到天天文库
浏览记录
ID:20980335
大小:212.50 KB
页数:17页
时间:2018-10-18
《硕士医学统计学知识点总结》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2章统计描述1.对定量资料进行统计描述时,如何选择适宜的指标?定量资料统计描述常用的统计指标及其适用场合描述内容指标意义适用场合平均水平均数个体的平均值对称分布几何均数平均倍数取对数后对称分布中位数位次居中的观察值①非对称分布;②半定量资料;③末端开口资料;④分布不明众数频数最多的观察值不拘分布形式,概略分析调和均数基于倒数变换的平均值正偏峰分布资料变异度全距观察值取值范围不拘分布形式,概略分析标准差(方差)观察值平均离开均数的程度对称分布,特别是正态分布资料四分位数间距居中半数观察值的全距①非对称分布;②半定量资料;③末端开口资料;④分布不明变异系数标准差与均数的相对比①不同量纲的
2、变量间比较;②量纲相同但数量级相差悬殊的变量间比较定性资料:阳性事件的概率,概率分布,强度和相对比。2.应用相对数时应注意哪些问题?答:(1)防止概念混淆相对数的计算是两部分观察结果的比值,根据这两部分观察结果的特点,就可以判断所计算的相对数属于前述何种指标。(2)计算相对数时分母不宜过小样本量较小时以直接报告绝对数为宜。(3)观察单位数不等的几个相对数,不能直接相加求其平均水平。(4)相对数间的比较须注意可比性,有时需分组讨论或计算标准化率。3.常用统计图有哪些?分别适用于什么分析目的?常用统计图的适用资料及实施方法图形适用资料实施方法条图组间数量对比用直条高度表示数量大小直方图定量
3、资料的分布用直条的面积表示各组段的频数或频率百分条图构成比用直条分段的长度表示全体中各部分的构成比饼图构成比用圆饼的扇形面积表示全体中各部分的构成比线图定量资料数值变动线条位于横、纵坐标均为算术尺度的坐标系半对数线图定量资料发展速度线条位于算术尺度为横坐标和对数尺度为纵坐标的坐标系散点图双变量间的关联点的密集程度和形成的趋势,表示两现象间的相关关系箱式图定量资料取值范围用箱体、线条标志四分位数间距及中位数、全距的位置茎叶图定量资料的分布用茎表示组段的设置情形,叶片为个体值,叶长为频数第3章概率分布1.服从二项分布及Poisson分布的条件分别是什么?二项分布成立的条件:①每次试验只能是
4、互斥的两个结果之一;②每次试验的条件不变;③各次试验独立。Poisson分布成立的条件:除二项分布成立的三个条件外,还要求试验次数很大,而所关心的事件发生的概率很小。2.二项分布、Poisson分布分别有什么特征?①二项分布、Poisson分布都是离散型分布。②二项分布的形状取决于π与n的大小。π=0.5时,不论n大小,对称分布。π≠0.5时,图形呈偏态,随n增大而逐渐对称。当n足够大,π或1-π不太小,二项分布近似正态。③Poisson分布μ越小,分布越偏。μ越大,分布越对称。当n足够大时,分布接近正态。4、正态分布应用①估计变量值的频数分布②制定参考值范围③质量控制④正态分布是很多
5、统计方法的基础5.正态分布特征①以均数为中心,左右对称②正态曲线在横轴上方均数处取得最高点③正态分布有两个参数,即均数(位置参数)和标准差(变异度参数)④正态曲线下面积有一定规律第4章参数估计1.标准误与标准差的区别(1)标准差反映个体值散布的程度;标准误反映估计总体参数的精确程度。(2)标准误小于标准差。(3)样本含量越大,标准误越小,其样本均数更有可能接近于总体均数,随着样本含量的增大,标准差有可能增大,也有可能减小。(4)用途不同。标准差的用途:①反映一组资料的离散程度②计算变异系数③结合均数与正态分布的规律,估计参考值范围标准误的用途:④衡量样本均数的可靠性⑤与样本均数结合,估
6、计总体均数的置信区间⑥可用于进行均数的假设检验标准误与标准差的区别与联系标准差标准误区别含义描述个体观察值的离散程度反应总体参数被估计的精确程度范畴统计描述统计推断用途估计参考值范围估计置信区间nn越大,标准差越稳定n越大,标准误越小联系1.标准误大小与标准差成正比;2.n一定时,标准差越大,标准误也越大。3.简述置信区间与医学参考值范围的区别。区别置信区间参考值范围含义用途计算公式总体参数的波动范围,即按事先给定的概率100(1-α)%所确定的包含未知总体参数的一个波动范围估计未知总体均数所在范围s未知:s已知或s未知但n≥30,有或个体值的波动范围,即按事先给定的范围100(1-α
7、)%所确定的“正常人”的解剖、生理、生化指标的波动范围供判断观察个体某项指标是否“正常”时参考(辅助诊断)正态分布:偏峰分布:PX~P100-X4何谓置信区间准确度与精确度?如何协调两者间的关系。置信区间有准确度与精密度两个要素。(1)准确度由置信度 (1-α)的大小确定,即由置信区间包含总体参数的可能性大小来反映。从准确度的角度看,置信度愈接近于1愈好,(2)精密度是置信区间宽度的一半,意指置信区间的两端点值离样本统计量(如、p)的距离。从精
此文档下载收益归作者所有