资源描述:
《人版选修4-4全套教(学)案.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、word资料下载可编辑高中数学选修4-4全套教案第一讲坐标系一平面直角坐标系课题:1、平面直角坐标系教学目的:1.回顾在平面直角坐标系中刻画点的位置的方法2.体会坐标系的作用3.通过观察、探索、发现的创造性过程,培养创新意识。教学重点:体会直角坐标系的作用教学难点:能够建立适当的直角坐标系,解决数学问题教学过程:一、复习引入:情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。情境2:运动会的开幕式上常常有大型团体操的表演,其中不
2、断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。问题1:如何刻画一个几何图形的位置?问题2:如何创建坐标系?二、学生活动学生回顾刻画一个几何图形的位置,需要设定一个参照系1、数轴它使直线上任一点P都可以由惟一的实数x确定2、平面直角坐标系在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定3、空间直角坐标系在空间中,选择两两垂直且交于一点的三条直线,当取定这
3、三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定三、讲解新课:1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置2、确定点的位置就是求出这个点在设定的坐标系中的坐标四、数学运用例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。专业技术资料word资料下载可编辑*变式训练如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置?例
4、2已知B村位于A村的正西方1公里处,原计划经过B村沿着北偏东60的方向设一条地下管线m.但在A村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W周围100米范围划为禁区.试问:埋设地下管线m的计划需要修改吗?*变式训练1.一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B两地相距800米,并且此时的声速为340m/s,求曲线的方程2.在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程例3已知Q(a,b),分别按下列条件求出P的坐标(1)P是点Q关于点M(m,n)的对称点(
5、2)P是点Q关于直线l:x-y+4=0的对称点(Q不在直线1上)*变式训练用两种以上的方法证明:三角形的三条高线交于一点。思考通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?四、巩固与练习五、小结:本节课学习了以下内容:1.如何建立直角坐标系;2.建标法的基本步骤;3.什么时候需要建标。五、课后作业:课本P14页1,2,3,4六、课后反思:建标法,学生学习有印象,但没有主动建标的意识,说明学生数学学习缺乏系统性,需要加强训练。专业技术资料word资料下载可编辑课题:2、平面直角坐标系中的伸缩变换教学目标:1.平面直角坐标系中
6、的坐标变换2.体会坐标变换的作用3.通过观察、探索、发现的创造性过程,培养创新意识教学重点:理解平面直角坐标系中的坐标变换、伸缩变换教学难点:会用坐标变换、伸缩变换解决实际问题教学过程:一、阅读教材P4—P8问题探究1:怎样由正弦曲线得到曲线?思考:“保持纵坐标不变横坐标缩为原来的一半”的实质是什么?问题探究2:怎样由正弦曲线得到曲线?思考:“保持横坐标不变纵坐标缩为原来的3倍”的实质是什么?问题探究3:怎样由正弦曲线得到曲线?二、新课讲解:定义:设P(x,y)是平面直角坐标系中任意一点,在变换的作用下,点P(x,y)对应P’(x’,y’)
7、.称为平面直角坐标系中的伸缩变换注(1)(2)把图形看成点的运动轨迹,平面图形的伸缩变换可以用坐标伸缩变换得到;(3)在伸缩变换下,平面直角坐标系不变,在同一直角坐标系下进行伸缩变换。例1、在直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。(1)2x+3y=0;(2)例2、在同一平面坐标系中,经过伸缩变换后,曲线C变为曲线,求曲线C的方程并画出图象。三、知识应用:1、已知(的图象可以看作把的图象在其所在的坐标系中的横坐标压缩到原来的倍(纵坐标不变)而得到的,则为()A.B.2C.3D.专业技术资料word资料下载可编辑2、在同一直
8、角坐标系中,经过伸缩变换后,曲线C变为曲线则曲线C的方程为( )A.B.C.D.3、在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。(1)(2)。四、知识归纳: