solutions-manual-feedback-control-of-dynamic-systems-franklin-5th-edition

solutions-manual-feedback-control-of-dynamic-systems-franklin-5th-edition

ID:20593055

大小:9.92 MB

页数:672页

时间:2018-10-14

solutions-manual-feedback-control-of-dynamic-systems-franklin-5th-edition_第1页
solutions-manual-feedback-control-of-dynamic-systems-franklin-5th-edition_第2页
solutions-manual-feedback-control-of-dynamic-systems-franklin-5th-edition_第3页
solutions-manual-feedback-control-of-dynamic-systems-franklin-5th-edition_第4页
solutions-manual-feedback-control-of-dynamic-systems-franklin-5th-edition_第5页
资源描述:

《solutions-manual-feedback-control-of-dynamic-systems-franklin-5th-edition》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Chapter2DynamicModelsProblemsandSolutionsforSection2.11.WritethedifferentialequationsforthemechanicalsystemsshowninFig.2.38.Solution:ThekeyistodrawtheFreeBodyDiagram(FBD)inordertokeepthesignsright.For(a),toidentifythedirectionofthespringforcesontheobject,letx2=0andÞxedandincreasex1from0.Thenthek1sp

2、ringwillbestretchedproducingitsspringforcetotheleftandthek2springwillbecompressedproducingitsspringforcetotheleftalso.Youcanusethesametechniqueonthedamperforcesandtheothermass.(a)m1x¨1=−k1x1−b1xú1−k2(x1−x2)m2x¨2=−k2(x2−x1)−k3(x2−y)−b2xú21112CHAPTER2.DYNAMICMODELSFigure2.38:Mechanicalsystems13m1x¨1

3、=−k1x1−k2(x1−x2)−b1xú1m2x¨2=−k2(x2−x1)−k3x2m1x¨1=−k1x1−k2(x1−x2)−b1(xú1−xú2)m2x¨2=F−k2(x2−x1)−b1(xú2−xú1)2.Writetheequationsofmotionofapendulumconsistingofathin,2-kgstickoflengthlsuspendedfromapivot.Howlongshouldtherodbeinorderfortheperiodtobeexactly2secs?(TheinertiaIofathinstickaboutanendpointis1

4、ml2.Assumeθissmallenoughthatsinθ∼=θ.)3Solution:Let’suseEq.(2.14)M=Iα,14CHAPTER2.DYNAMICMODELSlO2mgMomentaboutpointO.lMO=−mg×sinθ=IO¨θ2=1ml2¨θ33g¨θ+sinθ=02lAsweassumedθissmall,3g¨θ+θ=02lThefrequencyonlydependsonthelengthoftherod23gω=2ls2π2lT==2π=2ω3g3gl==1.49m2π215Figure2.39:Doublependulum

5、q(a)Comparetheformulafortheperiod,T=2π2lwiththewellknown3gformulafortheperiodofapointmasshangingwithastringwithqlengthl.T=2πl.g(b)Important!Ingeneral,Eq.(2.14)isvalidonlywhenthereferencepointforthemomentandthemomentofinertiaisthemasscenterofthebody.However,wealsocanusetheformularwithareferencepoin

6、totherthanmasscenterwhenthepointofreferenceisÞxedornotaccelerating,aswasthecasehereforpointO.3.Writetheequationsofmotionforthedouble-pendulumsystemshowninFig.2.39.Assumethedisplacementanglesofthependulumsaresmallenoughtoensurethatthespringisalwayshorizontal.Thependulumrodsaretakentobemassless,ofle

7、ngthl,andthespringsareattached3/4ofthewaydown.Solution:16CHAPTER2.DYNAMICMODELS3l412kmm33lsinlsin1244Ifwewritethemomentequilibriumaboutthepivotpointoftheleftpen-dulemfromthefreebodydiagram,M=−mglsinθ−k3l(sinθ

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签