spss探索性因子分析的过程

spss探索性因子分析的过程

ID:20285851

大小:334.50 KB

页数:9页

时间:2018-10-12

spss探索性因子分析的过程_第1页
spss探索性因子分析的过程_第2页
spss探索性因子分析的过程_第3页
spss探索性因子分析的过程_第4页
spss探索性因子分析的过程_第5页
资源描述:

《spss探索性因子分析的过程》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、技术资料现要对远程学习者对教育技术资源和使用情况进行了解,设计一个李克特量表,如下图所示:问题题项从未使用很少使用有时使用经常使用总是使用12345a1电脑a2录音磁带a3录像带a4网上资料a5校园网或因特网a6电子邮件a7电子讨论网a8CAI课件a9视频会议a10视听会议一.因子分析的定义在现实研究过程中,往往需要对所反映事物、现象从多个角度进行观测。因此研究者往往设计出多个观测变量,从多个变量收集大量数据以便进行分析寻找规律。多变量大样本虽然会为我们的科学研究提供丰富的信息,但却增加了数据采集和处理的

2、难度。更重要的是许多变量之间存在一定的相关关系,导致了信息的重叠现象,从而增加了问题分析的复杂性。因子分析是将现实生活中众多相关、重叠的信息进行合并和综合,将原始的多个变量和指标变成较少的几个综合变量和综合指标,以利于分析判定。用较少的综合指标分析存在于各变量中的各类信息,而各综合指标之间彼此是不相关的,代表各类信息的综合指标成为因子。因子分析就是用少数几个因子来描述许多指标之间的联系,以较少几个因子反应原资料的大部分信息的统计方法。二.数学模型为第i个变量的标准化分数;(标准分是一种由原始分推导出来的相

3、对地位量数,它是用来说明原始分在所属的那批分数中的相对位置的。)为共同因子;为所有变量共同因子的数目;为变量的唯一因素;为因子负荷。(也叫因子载荷,统计意义就是第i个变量与第m个公共因子的相关系数,它反映了第i个变量在第m个公共因子上的相对重要性也就是第m个共同因子对第i个变量的解释程度。)因子分析的理想情况,在于个别因子负荷不是很大就是很小,这样每个变量才能与较少的共同因子产生密切关联,如果想要以最少的共同因素数来解释变量间的关系程度,则彼此间不能有关联存在。所谓的因子负荷就是因子结构中原始变量与因子分

4、析时抽取出共同因子的相关,即在各个因子变量不相关的情况下,因子负荷就是第i个原有变量和第m个因子变量间的相关系数,也就是共享知识技术资料在第m个共同因子变量上的相对重要性,因此,绝对值越大则公共因子和原有变量关系越强。在因子分析中有两个重要指针:一为“共同性”,二为“特征值”。所为共同性,也称变量共同度或者公共方差,就是每个变量在每个共同因子的负荷量的平方总和(一横列中所有因子负荷的的平方和),也就是个别变量可以被共同因子解释的变异量百分比,这个值是个别变量与共同因子间多元相关的平方。从共同性的大小可以判

5、断这个原始变量与共同因子间的关系程度。如果大部分变量的共同度都高于0.8,则说明提取出的共同因子已经基本反映了各原始变量80%以上的信息,仅有较少的信息丢失,因子分析效果较好。而各变量的唯一因素就是1减掉该变量共同性的值,就是原有变量不能被因子变量所能解释的部分。所谓特征值,是每个变量在某一共同因子的因子负荷的平方总和(一直行所有因子负荷的平方和),在因子分析的的共同因子抽取中,特征值最大的共同因子会最先被抽取,其次是次大者,最后抽取的共同因子的特征值会最小,通常会接近于0。将每个共同因子的特征值除以总题

6、数,为此共同因子可以解释的变异量,因子分析的目的之一,即在因素结构的简单化,希望以最少的共同因子能对总变异量做最大的解释,因而抽取的因素越少越好,但抽取的因子的累积变异量越大越好。三.SPSS中实现过程(一)录入数据(二)因子分析1.在菜单栏中依次单击“分析”

7、“降维”

8、“因子分析”选项卡,打开如图所示“因子分析”对话框。从原变量量表中选择需要进行因子分析的变量,然后单击箭头按钮将选中的变量选入“变量”列表中。“变量列表”的变量为要进行因子分析的的目标变量,变量在区间或比率级别应该是定量变量。分类数据(如

9、:性别等)不适合因子分析。共享知识技术资料2.“描述按钮”:主要设定对原始变量的基本描述并对原始变量进行相关性分析。选中“原始分析结果”复选框,表示因子分析未转轴前之共同性、特征值、变异数百分比及累积百分比,这是一个中间结果,对主成分分析来说,这些值是要进行分析变量的相关或协方差矩阵的对角元素。KMO与Bartlett球形度检验用来检验适不适合用来做因子分析。KMO检验,检验变量间的偏相关是否很小;巴特利特球形检验,检验相关阵是否是单位阵。KMO值越接近1越适合做因子分析,巴特利特检验的原假设设为相关矩阵

10、为单位阵,如果Sig值拒绝原假设表示变量间存在相关关系,因此适合做因子分析。3.单击“抽取”按钮:主要设定提取公共因子的方法和公共因子的个数。共享知识技术资料方法:主成分分析法。SPSS默认方法。该方法假定原变量是因子变量的线性组合,第一主成分有最大的方差,后续成分可解释的方差越来越少。这是使用最多的因子提取方法。分析:相关性矩阵。表示以相关性矩阵作为提取公共因子的依据,当分析中使用不同的尺度测量变量时比较适合。输出:未旋转的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。