资源描述:
《公平的席位分配问题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、公平的席位分配问题数学实验与数学建模公平的席位分配系别学生比例20席的分配人数(%)比例结果甲10351.5乙6331.5丙3417.0总和200100.020.02021席的分配比例结果10.8156.6153.57021.00021问题三个系学生共200名(甲系100,乙系60,丙系40),代表会议共20席,按比例分配,三个系分别为10,6,4席。现因学生转系,三系人数为103,63,34,问20席如何分配。若增加为21席,又如何分配。比例加惯例对丙系公平吗系别学生比例20席的分配人数(%)比例结果甲1035
2、1.510.3乙6331.56.3丙3417.03.4总和200100.020.020系别学生比例20席的分配人数(%)比例结果甲10351.510.310乙6331.56.36丙3417.03.44总和200100.020.02021席的分配比例结果10.815116.61573.570321.00021“公平”分配方法衡量公平分配的数量指标人数席位A方p1n1B方p2n2当p1/n1=p2/n2时,分配公平p1/n1–p2/n2~对A的绝对不公平度p1=150,n1=10,p1/n1=15p2=100,n2=
3、10,p2/n2=10p1=1050,n1=10,p1/n1=105p2=1000,n2=10,p2/n2=100p1/n1–p2/n2=5但后者对A的不公平程度已大大降低!虽二者的绝对不公平度相同若p1/n1>p2/n2,对不公平Ap1/n1–p2/n2=5公平分配方案应使rA,rB尽量小设A,B已分别有n1,n2席,若增加1席,问应分给A,还是B不妨设分配开始时p1/n1>p2/n2,即对A不公平~对A的相对不公平度将绝对度量改为相对度量类似地定义rB(n1,n2)将一次性的席位分配转化为动态的席位分配,即“
4、公平”分配方法若p1/n1>p2/n2,定义1)若p1/(n1+1)>p2/n2,则这席应给A2)若p1/(n1+1)p2/(n2+1),应计算rB(n1+1,n2)应计算rA(n1,n2+1)若rB(n1+1,n2)p2/n2问:p1/n1rA(n1,n2+1),则这席应给B当rB(n1+1,n2)5、义该席给A否则,该席给B定义该席给Q值较大的一方推广到m方分配席位该席给Q值最大的一方Q值方法计算,美学角度,可以鉴赏几何平均数的平方三系用Q值方法重新分配21个席位按人数比例的整数部分已将19席分配完毕甲系:p1=103,n1=10乙系:p2=63,n2=6丙系:p3=34,n3=3用Q值方法分配第20席和第21席第20席第21席同上Q3最大,第21席给丙系甲系11席,乙系6席,丙系4席Q值方法分配结果公平吗?Q1最大,第20席给甲系进一步的讨论Q值方法比“比例加惯例”方法更公平吗?席位分配的理想化准则已知:m
6、方人数分别为p1,p2,…,pm,记总人数为P=p1+p2+…+pm,待分配的总席位为N。设理想情况下m方分配的席位分别为n1,n2,…,nm(自然应有n1+n2+…+nm=N),记qi=Npi/P,i=1,2,…,m,ni应是N和p1,…,pm的函数,即ni=ni(N,p1,…,pm)若qi均为整数,显然应ni=qiqi=Npi/P不全为整数时,ni应满足的准则:记[qi]–=floor(qi)~向qi方向取整;[qi]+=ceil(qi)~向qi方向取整.1)[qi]–ni[qi]+(i=1,2,…,
7、m),2)ni(N,p1,…,pm)ni(N+1,p1,…,pm)(i=1,2,…,m)即ni必取[qi]–,[qi]+之一即当总席位增加时,ni不应减少“比例加惯例”方法满足1),但不满足2)Q值方法满足2),但不满足1)。令人遗憾!评注:学习者除了在寻找适当的数学方法解决席位的公平分配这一问题本身建模方法外,还应当从“从建立了相对不公平指标、并最终导出Q-值法”这一过程得到启发——尽管Q-值法能否被发现并不影响席位分配的最终方案,但用Q-值法来表述实现算法更加简洁有效,而且很容易将由两个团体席位分配的算法推
8、广到多个团体的情形,领会“内容”与“形式”的辨证关系,认真对待自己的每一次创作.