欢迎来到天天文库
浏览记录
ID:20018126
大小:25.50 KB
页数:5页
时间:2018-10-08
《初一不等式的解集教参》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、初一不等式的解集教参 教学建议 一、知识结构 二、重点、难点分析 本节教学的重点是不等式的解集的概念及在数轴上表示不等式的解集的方法.难点为不等式的解集的概念. 1.不等式的解与方程的解的意义的异同点 相同点:定义方式相同(使方程成立的未知数的值,叫做方程的解);解的表示方法也相同. 不同点:解的个数不同,一般地,一个不等式有无数多个解,而一个方程只有一个或几个解,例如,能使不等式成立,那么是不等式的一个解,类似地等也能使不等式成立,它们都是不等式的解,事实上,当取大于的数时,不等式都成立,所以不等式有无数多个解. 2.不等式的解与解集的区别与联系 不等式的解与不等式的解
2、集是两个不同的概念,不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集,是指满足这个不等式的未知数的所有的值,不等式的所有解组成了解集,解集中包括了每一个解. 注意:不等式的解集必须满足两个条件:第一,解集中的任何一个数值,都能使不等式成立;第二,解集外的任何一个数值,都不能使不等式成立. 3.不等式解集的表示方法 (1)用不等式表示 一般地,一个含未知数的不等式有无数多个解,其解集是某个范围,这个范围可用一个最简单的不等式表示出来,例如,不等式的解集是. (2)用数轴表示 如不等式的解集,可以用数轴上表示4的点的左边部分表示,因为包含,所以在表示4的点上画实心圆. 如
3、不等式的解集,可以用数轴上表示4的点的左边部分表示,因为包含,所以在表示4的点上画实心圈. 注意:在数轴上,右边的点表示的数总比左边的点表示的数大,所以在数轴上表示不等式的解集时应牢记:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈. 一、素质教育目标 (一)知识教学点 1.使学生了解不等式的解集、解不等式的概念,会在数轴上表示出不等式的解集. 2.知道不等式的“解集”与方程“解”的不同点. (二)能力训练点 通过教学,使学生能够正确地在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示. (三)德育渗透点 通过讲解不等式的“解集”与方程
4、“解”的关系,向学生渗透对立统一的辩证观点. (四)美育渗透点 通过本节课的学习,让学生了解不等式的解集可利用图形来表达,渗透数形结合的数学美. 二、学法引导 1.教学方法:类比法、引导发现法、实践法. 2.学生学法:明确不等式的解与解集的区别和联系,并能熟练地用数轴表示不等式的解集,在数轴上表示不等式的解集时,要特别注意:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈. 三、重点·难点·疑点及解决办法 (一)重点 1.不等式解集的概念. 2.利用数轴表示不等式的解集. (二)难点 正确理解不等式解集的概念. (三)疑点 弄不清不等式的解集与方程的解的
5、区别、联系. (四)解决办法 弄清楚不等式的解与解集的概念. 四、课时安排 一课时. 五、教具学具准备 投影仪或电脑、自制胶片、直尺. 六、师生互动活动设计 (一)明确目标 本节课重点学习不等式的解集,解不等式的概念并会用数轴表示不等式的解集. (二)整体感知 通过枚举法来形象直观地推出不等式的解集,再给出不等式解集的概念,从而更准确地让学生掌握该概念.再通过师生的互动学习用数轴表示不等式的解集,从而为今后求不等式组的解集打下良好的基础. (三)教学过程 1.创设情境,复习引入 (1)根据不等式的基本性质,把下列不等式化成或的形式. ① ② (2)当取下列数
6、值时,不等式是否成立? l,0,2,-2.5,-4,3.5,4,4.5,3. 学生活动:独立思考并说出答案:(1)①②.(2)当取1,0,2,-2.5,-4时,不等式成立;当取3.5,4,4.5,3时,不等式不成立. 大家知道,当取1,2,0,-2.5,-4时,不等式成立.同方程类似,我们就说1,2,0,-2.5,-4是不等式的解,而3.5,4,4.5,3这些使不等式不成立的数就不是不等式 [1][2][3]&n 不等式
此文档下载收益归作者所有