欢迎来到天天文库
浏览记录
ID:19999565
大小:130.00 KB
页数:4页
时间:2018-10-08
《2013北师大版初三下册圆数学知识点总结》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、2013最新版初三下册数学知识点总结第一天第一章直角三角形边的关系※一.正切:正切即;0º30º45º60ºsinα0cosα1tanα01正弦,即;余弦,即;①;sin2A+cos2A=1(5)直角三角形的内切圆半径(6)直角三角形的外接圆半径※如图2,坡面与水平面的夹角叫做坡角(或叫做坡比)。用字母i表示,即(第二天)第三章圆1.点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则①点在圆上<===>d=r;②点在圆内<===>dd>r.二.圆的对称性:※1.与圆相关的概念:④同
2、心圆:圆心相同,半径不等的两个圆叫做同心圆。⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。⑦圆心角:顶点在圆心的角叫做圆心角.⑧弦心距:从圆心到弦的距离叫做弦心距.※2.圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。※3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦
3、所对的优弧;⑤平分弦所对的劣弧。上述五个条件中的任何两个条件都可推出其他三个结论。constructionqualityacceptanceandassessmentRegulation(ProfessionalEdition)(DL/T5210.2-2009~DL/T5210.8-2009);1.9thequalitycheckoutandevaluationofelectricequipmentinstallationengineeringcode(DL/T5161.1-2002~5161.17-2002);1.10the
4、normsofconstructionsupervision,theelectricpowerconstructionsupervisionregulations第3页※4.定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等。推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(第三天)三.圆周角和圆心角的关系:※1.圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角.※2.圆周角定理;一条弧所对的圆周角等于它所对的圆心
5、角的一半.※推论1:同弧或等弧所对的圆周角相等;反之,在同圆或等圆中,相等圆周角所对的弧也相等;※推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;※四.确定圆的条件:※1.理解确定一个圆必须的具备两个条件:经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上.※2.定理:不在同一直线上的三个点确定一个圆.※3.三角形的外接圆、三角形的外心、圆的内接三角形的概念:(1)三角形的外接圆和圆的内接三角形:经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形
6、.(2)三角形的外心:三角形外接圆的圆心叫做这个三角形的外心.(3)三角形的外心的性质:三角形外心到三顶点的距离相等.(第四天)五.直线与圆的位置关系设⊙O的半径为r,圆心O到直线的距离为d;①d直线L和⊙O相交.②d=r<===>直线L和⊙O相切.③d>r<===>直线L和⊙O相离.※3.切线的判定定理:经过半径的外端并且垂直于这个条半径的直线是圆的切线.※4.切线的性质定理:圆的切线垂直于过切点的半径.※推论1经过圆心且垂直于切线的直线必经过切点.※推论2经过切点且垂直于切线的直线必经过圆心.※
7、分析性质定理及两个推论的条件和结论间的关系,可得如下结论:如果一条直线具备下列三个条件中的任意两个,就可推出第三个.①垂直于切线;②过切点;③过圆心.(第五天)5.三角形的内切圆、内心、圆的外切三角形的概念.和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.※6.三角形内心的性质:(1)三角形的内心到三边的距离相等.(2)过三角形顶点和内心的射线平分三角形的内角.由此性质引出一条重要的辅助线:连接内心和三角形的顶点,该线平分三角形的这个内角.六.圆和圆的位置关系.※2.两圆位
8、置关系的性质与判定:(1)两圆外离<===>d>R+r(2)两圆外切<===>d=R+r(3)两圆相交<===>R-r
此文档下载收益归作者所有