欢迎来到天天文库
浏览记录
ID:18542312
大小:465.00 KB
页数:23页
时间:2018-09-19
《中考数学复习专题精品导学案:第12讲一次函数(含答案)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2013年中考数学专题复习第十二讲:一次函数【基础知识回顾】一、一次函数的定义:一般的:如果y=()即y叫x的一次函数特别的:当b=时,一次函数就变为y-kx(k≠0),这时y叫x的【名师提醒:正比例函数是一次函数,反之不一定成立,是有当b=0时,它才是正比例函数】二、一次函数的同象及性质:1、一次函数y=kx+b的同象是经过点(0,b)(-,0)的一条正比例函数y=kx的同象是经过点和的一条直线【名师提醒:同为一次函数的同象是一条直线,所以函数同象是需返取个特殊的点过这两个点画一条直线即可】2、正比例函数y=kx(k≠0)当k>0时,其同象过、
2、象限,时y随x的增大而)当k<0时,其同象过、象限,时y随x的增大而3、一次函数y=kx+b,同象及函数性质Y随x的增大而①、k>0b>0过象限k>0b<0过象限Y随x的增大而k<0b>0过象限k<0b>0过象限4、若直线y=k1x+b1与l1y=k2x+b2平解,则k1k2,若k1≠k2,则l1与l2【名师提醒:y随x的变化情况,只取决于的符号与无关,而直线的平移,只改变的值的值不变】三、用系数法求一次函数解析式:关键:确定一次函数y=kx+b中的字母与的值步骤:1、设一次函数表达式2、将x,y的对应值或点的坐标代入表达式3、解关于系数的方程或
3、方程组4、将所求的系数代入等设函数表达式中四、一次函数与一元一次方程,一元一次不等式和二元一次方程组1、一次函数与一元一次方程:一般地将x=或y解一元一次方程求直线与坐标轴的交点坐标,代入y=kx+b中2、一次函数与一元一次不等式:kx+b>0或kx+b<0即一次函数同象位于x轴上方或下方时相应的x的取值范围,反之也成立3、一次函数与二元一次方程组:两条直线的交点坐标即为两个一次函数列二元一次方程组的解,反之根据方程组的解可求两条直线的交点坐标【名师提醒:1、一次函数与三者之间的关系问题一定要结合同象去解决2、在一次函数中讨论交点问题即是讨论一元
4、一次不等式的解集或二元一次方程组解得问题】五、一次函数的应用一般步骤:1、设定问题中的变量2、建立一次函数关系式3、确定取值范围4、利用函数性质解决问题5、作答【名师提醒:一次函数的应用多与二元一次方程组或一元一次不等式(组)相联系,经常涉及交点问题,方案涉及问题等】【重点考点例析】考点一:一次函数的同象和性质例1(2012•黄石)已知反比例函数y=(b为常数),当x>0时,y随x的增大而增大,则一次函数y=x+b的图象不经过第几象限.( )A.一B.二C.三D.四思路分析:先根据反比例函数的增减性判断出b的符号,再根据一次函数的图象与系数的关
5、系判断出次函数y=x+b的图象经过的象限即可.解:∵反比例函数y=(b为常数),当x>0时,y随x的增大而增大,∴b<0,∵一次函数y=x+b中k=1>0,b<0,∴此函数的图象经过一、三、四限,∴此函数的图象不经过第二象限.故选B.点评:本题考查的是一次函数的图象与系数的关系及反比例函数的性质,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+
6、b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.例2(2012•上海)已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的增大而(增大或减小).思路分析:首先利用待定系数法确定正比例函数解析式,再根据正比例函数的性质:k>0时,y随x的增大而增大,k<0时,y随x的增大而减小确定答案.解:∵点(2,-3)在正比例函数y=kx(k≠0)上,∴2k=-3,解得:k=-,∴正比例函数解析式是:y=-x,∵k=-<0,∴y随x的增大而减小,
7、故答案为:减小.点评:此题主要考查了正比例函数的性质,以及待定系数法确定正比例函数解析式,关键是掌握反比例函数的性质.对应训练1.(2012•沈阳)一次函数y=-x+2图象经过( )A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限1.B2.(2012•贵阳)在正比例函数y=-3mx中,函数y的值随x值的增大而增大,则P(m,5)在第象限.2.二2.解:∵正比例函数y=-3mx中,函数y的值随x值的增大而增大,∴-3m>0,解得m<0,∴点P(m,5)在第二象限.故答案为:二.考点二:一次函数解析式的确定例3(2012•聊
8、城)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且
此文档下载收益归作者所有