资源描述:
《18.2.1矩形第1课时教案》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、许镇中心初中电子备课教学设计备课人学科数学备课时间2015-3-30课时安排一课时课题18.2.1矩形第一课时教学目标知识目标掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系能力目标会初步运用矩形的概念和性质来解决有关问题情感、态度、价值观目标在探究讨论中养成与他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心。教学重难点学习重点:矩形的性质.学习难点:矩形的性质的灵活应用.otherstaffoftheCentre.Duringthewar,ZhuwastransferredbacktoJian
2、gxi,andDirectorofthenewOfficeinJingdezhen,JiangxiCommitteeSecretary.Startingin1939servedasrecorderoftheWestNorthOrganization,SecretaryoftheSpecialCommitteeAfterthevictoryofthelongMarch,hehasbeentheNorthwestOfficeoftheFederationofStateenterprisesMinister,ShenmufuguSARmissions,Directo
3、rofNingxiaCountypartyCommitteeSecretaryandrecorderoftheCountypartyCommitteeSecretary,Ministersand教学方法讲练结合;讨论探究法。otherstaffoftheCentre.Duringthewar,ZhuwastransferredbacktoJiangxi,andDirectorofthenewOfficeinJingdezhen,JiangxiCommitteeSecretary.Startingin1939servedasrecorderoftheWestNo
4、rthOrganization,SecretaryoftheSpecialCommitteeAfterthevictoryofthelongMarch,hehasbeentheNorthwestOfficeoftheFederationofStateenterprisesMinister,ShenmufuguSARmissions,DirectorofNingxiaCountypartyCommitteeSecretaryandrecorderoftheCountypartyCommitteeSecretary,Ministersand教学过程 一、自主预
5、习(10分钟)(1)请用四根木棒拼成一个平行四边形,拼成的平行四边形形状唯一吗?(2)试着改变平行四边形的形状,你能拼出面积最大的平行四边形吗?这时这个平行四边形的内角是多少度?(3)观察图形特征,得出概念.叫做矩形.矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.二、合作解疑(25分钟)问题一如图,矩形ABCD,对角线相交于O,观察对角线所分成的三角形,你有什么发现?问题二将目光锁定在Rt△ABC中,你能发现它有什
6、么特殊的性质吗?证明:“直角三角形斜边上的中线等于斜边的一半.”已知:图形:画在下面otherstaffoftheCentre.Duringthewar,ZhuwastransferredbacktoJiangxi,andDirectorofthenewOfficeinJingdezhen,JiangxiCommitteeSecretary.Startingin1939servedasrecorderoftheWestNorthOrganization,SecretaryoftheSpecialCommitteeAfterthevictoryofthelong
7、March,hehasbeentheNorthwestOfficeoftheFederationofStateenterprisesMinister,ShenmufuguSARmissions,DirectorofNingxiaCountypartyCommitteeSecretaryandrecorderoftheCountypartyCommitteeSecretary,Ministersand求证:证明:四、例题学习例:已知:如图,矩形ABCD的两条对角线相交于点O,且AC=2AB。求证:△AOB是等边三角形。(注意表达格式完整性与逻辑性)OBCDA拓展
8、与延伸:本题若将“AC=2AB”改为“