欢迎来到天天文库
浏览记录
ID:15879750
大小:180.00 KB
页数:12页
时间:2018-08-06
《北师大九年级数学上1章特殊平行四边形单元检测题初三数学试题试卷》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、北师大版九年级数学上第1章《特殊平行四边形》单元试题 (100分钟,120分)一、选择题1.下列给出的条件中,不能判断四边形ABCD是平行四边形的是( )A.AB∥CD,AD=BCB.∠A=∠C,∠B=∠DC.AB∥CD,AD∥BCD.AB=CD,AD=BC2.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18cm,CD:DA=2:3,△AOB的周长为13cm,那么BC的长是( )A.6cmB.9cmC.3cmD.12cm3.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠A
2、ED′等于( )A.50°B.55°C.60°D.65°4.给出以下三个命题:①对角线相等的四边形是矩形;②对角线互相垂直的四边形是菱形;③对角线互相垂直的矩形是正方形;④菱形对角线的平方和等于边长平方的4倍.其中真命题的是( )A.③B.①②C.②③D.③④5.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是( )A.3B.4C.5D.76.已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为( )A.6cm和9cmB.5cm和10cmC.4cm和11
3、cmD.7cm和8cm7.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是( )A.AB=CDB.AD=BCC.AB=BCD.AC=BD8.如图为菱形ABCD与△ABE的重叠情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为何?( )A.8B.9C.11D.129.如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是( )A.2B.3C.D.1+10.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形AB
4、CD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )A.2B.3C.D.二、填空题11.等边三角形、平行四边形、矩形、正方形四个图形中,既是轴对称图形又是中心对称图形的是 矩形、正方形 .12.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是 3 cm2.【解答】解:∵菱形的两条对角线长分别为2cm,3cm,∴它的面积是:×2×3=3(cm2).13.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是 45° .【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=
5、AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.14.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于 3.5 .【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴∠AOD=90°,∵AB+BC+CD+DA=28,∴AD=7,∵H为AD边中点,∴OH=AD=3.5;15.如图,点E在正方形A
6、BCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为 5 .【解答】解:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,三、解答题(15题12分,16题12分,17题16分)16.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,求△AEF的周长。【解答】解:在Rt△ABC中,AC==10cm,∵点E
7、、F分别是AO、AD的中点,∴EF是△AOD的中位线,EF=OD=BD=AC=cm,AF=AD=BC=4cm,AE=AO=AC=cm,∴△AEF的周长=AE+AF+EF=9cm.17.(2015•聊城)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴BE=CD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形
8、.18.(2016春•历下区期末)已知,如图1,BD是边长为1的正方形ABCD的
此文档下载收益归作者所有