资源描述:
《数学和应用数学毕业论文-等价无穷小量性质的理解、推广及其应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、毕业论文(设计)等价无穷小量性质的理解、推广及应用 姓名 饶才英 学号 ************ 年级 2007级 专业 数学与应用数学 系 (院) 成教学院 指导教师 ******2013年8月13日摘要 等价无穷小量具有很好的性质,灵活运用这些性质,无论是在求极限的运算中,还是在正项级数的敛散性判断中,都可取到预想不到的效果,能达到罗比塔法则所不能取代的作用.通过举例,对比了不同情况下等价无穷小量的应用以及在应用过程中应注意的一些性质条件,不仅使这些
2、原本复杂的问题简单化,而且可避免出现错误地应用等价无穷小量.关键词:等价无穷小量;极限;洛必达法则;比较审敛法;优越性目录1引言12等价无穷小量的概念及其重要性质12.1等价无穷小量的概念12.2等价无穷小量的重要性质22.3等价无穷小量性质的推广23等价无穷小量的应用53.1求函数的极限53.2等价无穷小量在近似计算中的应用63.3利用等价无穷小量和泰勒公式求函数极限63.4等价无穷小量在判断级数收敛中的应用74等价无穷小量的优势84.1运用等价无穷小量求函数极限的优势…………………………………………....................84
3、.2等价无穷小量在求函数极限过程中的优势………………………………………...............95结论12参考文献13致谢141引言等价无穷小量概念是微积分理论中最基本的概念之一,但在微积分理论中等价无穷小量的性质仅仅在“无穷小的比较”中出现过,其他地方似乎都未涉及到.其实,在判断广义积分、级数的敛散性,特别是在求极限的运算过程中,无穷小具有很好的性质,掌握并充分利用好它的性质,往往会使一些复杂的问题简单化,可起到事半功倍的效果,反之,则会错误百出,有时还很难判断错在什么地方.因此,有必要对等价无穷小量的性质进行深刻地认识和理解,以便恰当运
4、用,达到简化运算的目的.2等价无穷小量的概念及其重要性质这部分在同济大学应用数学系主编的«高等数学»、华东师范大学数学系的«数学分析»、马振明老师和吕克噗老师的«微分习题类型分析»、张云霞老师的«高等数学教学»。下面是我对这部分的理解与总结.推广部分的性质在书中未做证明,根据所学的知识以及数学方法我对其进行了证明.2.1等价无穷小量的概念定义若函数(包括数列)在某变化过程中以零为极限,则称该函数为这个变化过程中的无穷小量.如函数,sinx,1-cosx,ln(1+x)均为当x→0时的无穷小量.对于数列只有一种情形,即n→∞,如数列{}为n→∞时的
5、无穷小量或称为无穷小数列.注意:1)绝对值非常小的数不是无穷小量,0是唯一的是无穷小量的数;无穷小量无限趋近于0而又不等于0.2)无穷小量是变量,与它的变化过程密切相关,且在该变化过程中以零为极限.如函数当x∞时的无穷小量,但当x1时不是无穷小量.3)两个(相同类型)无穷小量之和、差、积仍为无穷小量.4)无穷小量与有界量的乘积为无穷小量.无穷小量的比较1)若存在正数K和L,使得在某上有,则称与为当时的同阶无穷小量.特别当则称与是同阶无穷小.2)若=1,则称与是等价无穷小量,记为~.3)若=0,则称是高阶无穷小,记作=.注:并不是任意两个无穷小均可
6、比较,如当x→0时,与都是无穷小量,但它们不能进行阶的比较.等价无穷小量的重要性质设α,α′,β,β′,γ等均为同一自变量变化过程中的无穷小,1若α~α′,β~β′,且lim存在,则lim=lim()2若α~β,β~γ,则α~γ.性质①表明等价无穷小量量的商的极限求法.性质②表明等价无穷小量的传递性.2.3等价无穷小量性质的推广α~α′,β~β′,且lim=c(≠-1),则α+β~α′+β′.证明因为lim=所以α+β~α′+β′.而学生则往往在性质(3)的应用上忽略了“lim=c(≠-1)”这个条件,千篇一律认为“α~α′,β~β′,则有α+β
7、~α′+β′在同一变化过程中,~,~,且存在,则=.证明因为===.故结论得证.若α~α′,β~β′,且lim′存在,则当≠0且lim存在,有lim=lim′.证明因为,又α~α′,β~β′,于是,,,从而=1,即~同理可证~.故命题得证.设在自变量的某一变化过程中,、、及、、都是无穷小量.1若~、~、且存在且,则有~.2若~、~、且存在且,则有~.3若~、~、~且存在且,则有.证明1因为==.又因为,故上式等于1.2因为==.又因为,故上式等于1.3要证成立,只需证,因为~,~,所以结论得证.性质(1)、(3)的求极限中就使等价无穷小量的代换有
8、了可能性,从而大大地简化了计算.但要注意条件“lim=c(≠-1)”,“≠0”的使用.注意1)需要注意的是在运用无穷小替换解题时,等价无