资源描述:
《范德蒙德行列式——简单明了》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§1.6行列式按行(列)展开一、余子式与代数余子式引例,考察三阶行列式在n阶行列式D中,把元素aij所在的第i行和第j列元素划去后,留下来的n–1阶行列式叫做(行列式D的关于)元素aij的余子式,记作Mij.即例如记Aij=(–1)i+jMij,称Aij为元素aij的代数余子式.引理:如果一个阶行列式D的第i行元素除aij外都为零,那么,行列式D等于aij与它的代数余子式Aij的乘积,即D=aijAij.行列式的每一个元素都分别对应着唯一的一个余子式和唯一的一个代数余子式.=aijAij.证:当aij位于第一行第一列时,又由于A11=(–1)1+1M11=M11,再证一般情形,此时由上节例3,
2、即教材中的例10得:D=a11M11.从而D=a11A11,即结论成立.把D的第i行依次与第i–1行,第i–2行,···,第1行交换,得把D的第j列依次与第j–1列,第j–2列,···,第1列交换,得=(–1)i+jaijM11,显然,M11恰好是aij在D中的余子式Mij,,即M11=Mij,因此,D=(–1)i+jaijMij=aijAij,故引理结论成立.定理3:行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即D=ai1Ai1+ai2Ai2+···+ainAin(i=1,2,···,n);D=a1iA1i+a2iA2i+···+aniAni(i=1,2,···,n
3、).证:二、行列式按行(列)展开法则D=ai1Ai1+ai2Ai2+···+ainAin(i=1,2,···,n).由引理得:引理的结论常用如下表达式:(i=1,2,···,n)解:按第一行展开,得例1:计算行列式如果按第二行展开,得例2:计算行列式解:D例3:证明范德蒙德(Vandermonde)行列式证:用数学归纳法所以,当n=2时,(1)式成立.假设对n-1阶范德蒙德行列式,(1)式成立.对n阶范德蒙德行列式,作如下变换,ri–x1ri-1(i=n,n–1,···,2,1).得按第一列展开,并把每列的公因子(xi–x1)提出,就有:n–1阶范德蒙德行列式则根据归纳假设得证:例4:计算行列
4、式解:推论:行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即ai1Aj1+ai2Aj2+···+ainAjn=0,ij;a1iA1j+a2iA2j+···+aniAnj=0,ij.证:把行列式D=det(aij)按第j行展开,得把ajk换成aik(k=1,2,···,n),当ij时,可得第j行第i行相同同理a1iA1j+a2iA2j+···+aniAnj=0,ij所以,ai1Aj1+ai2Aj2+···+ainAjn=0,ij关于代数余子式的重要性质其中1.行列式按行(列)展开法则是把高阶行列式的计算化为低阶行列式计算的重要工具.三、小结2.思考题求第一
5、行各元素的代数余子式之和:A11+A12+···+A1n.设n阶行列式思考题解答解:第一行各元素的代数余子式之和可以表示成A11+A12+···+A1n