人像识别在安全生产中的应用

人像识别在安全生产中的应用

ID:13828736

大小:31.50 KB

页数:9页

时间:2018-07-24

人像识别在安全生产中的应用 _第1页
人像识别在安全生产中的应用 _第2页
人像识别在安全生产中的应用 _第3页
人像识别在安全生产中的应用 _第4页
人像识别在安全生产中的应用 _第5页
资源描述:

《人像识别在安全生产中的应用 》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、人像识别在安全生产中的应用人像识别在安全生产中的应用人像识别在安全生产中的应用人像识别在安全生产中的应用人像识别在安全生产中的应用人像识别在安全生产中的应用  1系统体系结构  整个安全管控系统分为五个部分:视频数据采集、图像分离、人像特征挖掘、人像库建立和危险行为识别,如图1所示。图1安全管控系统系统体系其中视频数据采集和图像分离两个阶段实现了基础数据的粗加工,视频数据采集模块为系统提供实时的视频信息数据流,图像分离实现了图像中前景和背景的分离,为进一步进行人像的提取奠定了基础。人像特征挖掘阶段尤为

2、重要,此时系统要将识别出来的物体运行分类定性,可以运用多种数据挖掘方法进行分类,也可以融入的机器自学习理论运行分类的优化。人像特征挖掘不但要进行人像识别,更重要的是要形成便于存储、传输和共享的人像特征库,便于在多通道视频输入环境下进行各分布式分类器同时进行处理。上述过程的完成仅仅是实现了从复杂背景图像中提取人像的任务,接下来的任务是对生产环节中人员的着装、佩戴的安全装备和行为动作等关键的安全要素进行识别和处理。  2图像分离  图像分离技术包括静态图像分离和动态图像分离两个方面。静态图像分离可以采取的

3、手段并不多,主要集中在图像分割技术的讨论,包括阈值分割、区域分割、边缘分割和直方图法。近年针对人体特征的分割技术有了一些进展,出现了MagicWand[1]、IntelligentScissors[2]、ActiveContourModel[3]、GraphCut和LevelSet[4]等一系列有代表性的算法。但是无论上述哪种算法都是基于单张图像有限的图元信息进行分析,局限性比较大,比如:GraphCut算法是基于图像的颜色进行分析,如果前景和背景颜色比较接近时,就无法得到完整的人像轮库;LevelS

4、et算法无法处理模糊的和有噪声干扰的图像。本文的数据来源是连续视频信息,可以利用多帧图像信息的关联性将人像从背景中准确的提取出来。提取出来的图像没有背景的干扰,求取出来的特征值将更具有代表性。现有的运动图像前景提取算法包括:背景差分法、帧间差分法、光流法[5]、能量分析法和码本法[6]等。光流法真实的物体运动是在三维空间中进行的,可以用运动场来表示,而视频录像却是二维平面图像,物体的运动是通过计算各个像素点色彩的变化趋势,从而得到运动矢量来体现的。从三维空间到二维平面的映射,即是运动场到光流场的转换。

5、光流法即是利用多帧连续图像序列来计算各个像素点的运动矢量,从而为真实的运动进行近似估计的方法。光流法分离前景的最大特点是:该算法能够独立检测运动目标,甚至可以精确地计算出目标的运动速度而不需要任何先验的背景信息。光流法缺点也比较多。首先是计算繁杂,不适用于对效率要求较高的环境;其次外部光线变化对算法的影响比较大,即使物体没有运动,也能检测到光流;最后如果图像的灰度等级变化不明显,很难检测出运动和识别物体。码本法码本模型处理对象是仍然是连续图像。首先利用颜色失真程度和亮度失真范围相结合的方式将图像各像素

6、量化后用码本表示,将不同时刻图像中对应像素的码本做比较判断,利用减除背景的思想提取出前景运动目标。颜色失真因子:δ=colordist(x)t,vi=xt2-xt,xi2xi2(1)亮度失真因子:brightness(I),Ǐ,Î=ìíîtrueifIlow≤xt≤Ihifalseotherwise(2)具体算法是为每个像素建立一个编码本,这个编码本里包括一个或者多个码字。进行运动检测时,在编码本里已有的码字中查找当前帧像素点,如果前者中有可以匹配的码字,则该像素点即为背景点;如果匹配

7、失败,那么该像素点即为前景点,即运动目标的一部分。码本检测算法利用量化和聚类技术来构建背景模型具有鲁棒性强,计算效率高的特点,可以通过迭代更新码本模型来适应背景变化。  3人体特征挖掘与识别  通过图像分离,所有的活动目标都被区分识别出来了,其中包括人和其他物件。本节将要讨论如何选择合适的特征表述方法对目标进行标识,从而将人体和其他物件区分开来。物体具有的特征的非常多,比如说颜色、轮廓、形状、尺寸和纹理等,本文将选取HOG[7]特征作为标志和区分的依据。方向梯度直方图特征是由经过计算和统计的图像局部区

8、域梯度方向直方图构成,在计算机视觉和图像处理中常用来进行物体检测的特征描述。特征提取算法1.图像预处理—灰度化;2.图像颜色空间的标准化和归一化;3.计算每个像素的梯度值:大小和方向;4.将图像划分成细胞单元;5.统计每个Cell的梯度形成直方图,即CellDescriptor;6.将每几个Cell组成一个区块,每个区块内所有CellDescriptor再次归一化便得到该区块的BlockDescriptor。7.图像内的所有区块的BlockDescrip

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。