新的纳米技术进展

新的纳米技术进展

ID:13701108

大小:35.00 KB

页数:3页

时间:2018-07-24

新的纳米技术进展_第1页
新的纳米技术进展_第2页
新的纳米技术进展_第3页
资源描述:

《新的纳米技术进展》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、新的纳米技术进展纳米技术一般指纳米级(0.1-100nm)的材料、设计、制造、测量、控制和产品的技术。纳米技术主要包括:纳米级精度和表面形貌的测量;纳米级表层物理、化学、机械性能的检测;纳米级精度的加工和纳米级表层的加工原子和分子的去除、搬迁和重组;纳米材料;纳米级微传感器和控制技术;微型和超微型机械;微型和超微型机电系统和其他综合系统;纳米生物学等。一、纳米级测量技术纳米级测量技术包括:纳米级精度的尺寸和位移的测量,纳米级表面形貌的测量。纳米级测量技术主要有两个发展方向。光干涉测量技术可用于长度和位移的精确测量,也

2、可用于表面显微形貌的测量。扫描探针显微测量技术主要用于测量表面的微观形貌和尺寸。它的原理是用极尖的探针(或类似的方法)对被测表面进行扫描(探针和被测表面实际并不接触),借助纳米级的三维位移定位控制系统测出该表面的三维微观立体形貌。用这原理的测量方法有:扫描隧道显微镜(STM)、原子显微镜(AFM)等。二、纳米级表层物理、力学性能的检测各种材料的极薄表层的物理、化学、力学性能和材料内部的性能常有很大差异。而正是这极薄的表面材料在摩擦磨损、物理、化学、机械行为中起着主导作用。反映在现在“信息时代”的新型“智能型”材料的出

3、现,如计算机磁盘、光盘等,要求表层不但有优良的电、磁、光性能,而且要求有良好的润滑性、摩擦小、耐磨损、抗化学腐蚀、组织稳定和优良的力学性能。因此,世界各国都非常重视材料的纳米级表层的物理、化学、机械性能及其检测方法的研究。表层显微力学探针检测法是连续记录探针针尖加载、逐步压入和卸载、逐步退出试件表层的全过程的压痕深度变化。因其中包含试件表层的弹性变形、塑性变形、蠕变、变形速率等多种信息,所以通过这信息可测出表层材料的多项力学性能。用显微力学探针法检测涂层材料的表层硬度等力学性能极为方便有效。这种方法还可检测复合材料界

4、面的物理力学性能,对改善和发展新型材料极为有用。随着20世纪80年代尖端技术的发展,特别是计算机磁盘的发展,提出并促进了纳米级摩擦磨损问题的研究和发展。人们要求极大地提高计算机磁盘的容量,并且要求软磁盘的磨损率小于一个原子层(0.1-0.3nm),硬磁盘的磨损率为零。由于工程实际的需要和测试技术的突破,如原子力显微镜、表面力测量仪、垫层光干涉法等的应用,使纳米摩擦学获得很大的发展。纳米级摩擦副材料的研究发展,大大减少了材料表层的磨损。例如,固体表面加上单分子有序排列的LB膜,可使金属的动摩擦系数自0.8降到0.2。利

5、用LB膜技术,磁记录体的薄膜润滑达到分子级水平,大大提高其耐磨性。三、纳米级加工技术和微细加工技术纳米级加工的含意是达到纳米级精度、包含纳米级尺寸精度、纳米级几何形状精度和纳米级表面质量。3.1纳米级机械加工用金刚石刀具超精密切削加工有色金属和非金属、能获得Ra0.02-0.002µm的镜面。仔细研磨刀具时、可切1nm厚度的切屑。这种方法用于平面、圆柱面和非球曲面的镜面切削加工。最近新发展的金属结合剂砂轮的在线电解修整砂轮的ELID镜面磨削技术、可以加工出Ra0.02-0.002µm的镜面。精密研磨抛光可以加工出Ra

6、0.01-0.002µm的镜面。目前、量块、光学平晶、集成电路的硅基片等、都是最后用精密研磨达到高质量表面的。3.2电子束和离子束加工可用于刻蚀、打孔、切割、焊接、表面处理和表面改性等。电子束加工时、被加速的电子将其能量转化成热能、以便去除穿透层表面的原子,因此不易得到高精度。但电子束可以聚焦成很小的束斑(f0.1µm)照射敏感材料。用电子刻蚀,可加工出0.1µm的线条宽度、而在制造集成电路中实际应用。离子束加工时,因离子直径为0.1nm数量级、故可以直接将工件表面的原子碰撞出去达到加工的目的,故理论上有可能达到较高

7、的精度和效率。用聚焦的离子束进行刻蚀,可以得到精确的形状和纳米级的线条宽度。离子注射和沉积已成功地用于材料表面改性。3.3LIGA技术这是最新发展的光刻、电铸和模铸的复合微细加工新技术。它采用深度同步辐射X射线光刻,可以制造微型器件最大高度为1000µm、高宽比为200的立体微结构,加工精度可达0.1µm。刻出的图形侧壁陡峭、表面光滑。加工微型器件可以批量复制、加工成本低。目前、在LIGA工艺中再加入牺牲层的方法,使加工出的微器件一部分可以脱离母体而能转动或移动。这在制造微型电动机或其他驱动器时极为有用。LIGA技术

8、对制造微型机械是非常有用的工艺方法。四、扫描隧道显微加工技术扫描隧道显微加工技术是纳米加工技术中的最新发展、可实现原子、分子的搬迁、去除、增添和排列重组,是实现极限的精加工或原子级的精加工。近年来扫描隧道显微加工技术、即原子级加工技术获得了迅速的发展、取得了多项重要成果。1990年美国圣荷塞IBM阿尔马登研究所的D.M.Eigler等人、在4K

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。