圆锥曲线复习与小结

圆锥曲线复习与小结

ID:13537837

大小:175.91 KB

页数:10页

时间:2018-07-23

圆锥曲线复习与小结_第1页
圆锥曲线复习与小结_第2页
圆锥曲线复习与小结_第3页
圆锥曲线复习与小结_第4页
圆锥曲线复习与小结_第5页
资源描述:

《圆锥曲线复习与小结》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、圆锥曲线复习与小结一、知识回顾1.椭圆、双曲线、抛物线的标准方程与几何性质椭圆双曲线抛物线定义1.到两定点F1,F2的距离之和为定值2a(2a>

2、F1F2

3、)的点的轨迹1.到两定点F1,F2的距离之差的绝对值为定值2a(0<2a<

4、F1F2

5、)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(01)与定点和直线的距离相等的点的轨迹.图形方程标准方程(>0)(a>0,b>0)y2=2px参数方程(t为参数)范围─a£x£a,─b£y£b

6、x

7、³a,yÎRx³

8、0中心原点O(0,0)原点O(0,0)顶点(a,0),(─a,0),(0,b),(0,─b)(a,0),(─a,0)(0,0)对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长2a,虚轴长2b.x轴焦点F1(c,0),F2(─c,0)F1(c,0),F2(─c,0)焦距2c(c=)2c(c=)离心率e=1准线x=x=渐近线y=±x焦半径通径2p焦参数P1.椭圆、双曲线、抛物线的标准方程的其他形式及相应性质.2.等轴双曲线3.共轭双曲线5.方程y2=ax与x2=ay的焦点坐标及准线方程.6.共渐近线的双曲线系方程.二、

9、几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1(1)求和定圆x2+y2=k2的圆周的最小距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.例2设Q是圆x2+y2=4上的动点,另有点线段AQ的垂直平分线l交半

10、径OQ于点P,当Q点在圆周上运动时,求点P的轨迹方程.3.相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.例4.垂直于y轴的直线与y轴及抛物线y2=2(x–1)分别交于点A和点P,点B在y轴上且点A分的比为1:2,求线段PB中点的轨迹

11、方程.4.待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求.例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲线仅有两个公共点,又直线y=2x被双曲线截得线段长等于,求此双曲线方程.三、课堂练习1.两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程.2.动点P到点F1(1,0)的距离比它到F2(3,0)的距离少2,求P点的轨迹.3.已知圆x2+y2=4上有定点A(2,0),过定点A作弦AB,并延长到点P,使3

12、AB

13、=2

14、AB

15、,求动点P的轨迹方程.4.求抛物线y2=2px(p

16、>0)上各点与焦点连线的中点的轨迹方程.一、点、直线与圆锥曲线的位置关系1.点P(x0,y0)和圆锥曲线C:f(x,y)=0的位置关系有:点P在曲线C上、点P在曲线C内部(含焦点区域)、点P在曲线的外部(不含焦点的区域).2.直线l:Ax+By+C=0和圆锥曲线C:f(x,y)=0的位置关系可分为:相交、相切、相离.这三种位置关系的条件是:设直线l:Ax+By+C=0,圆锥曲线C:f(x,y)=0;由消去y(或x)得:ax2+bx+c=0(a≠0);令Δ=b2-4ac,则(1)Δ>0⇔相交;(2)Δ=0⇔相切(3)Δ<0⇔相

17、离.注意:直线与抛物线、双曲线有一个公共点是直线与抛物线、双曲线相切的必要条件,但不是充分条件.二、例题例1若直线y=kx+1与焦点在x轴上的椭圆总有公共点,求m的取值范围.提示:分别从曲线和方程与数形结合思想两个角度分析、解题.例2椭圆C:上有相异两点关系直线l:y=4x+m对称,求m的取值范围.点拨1:对称点在直线l’:上,且l’与椭圆C有两个不同的交点,可用“判别式法”.点拨2:两对称点P1(x1,y1),P2(x2,y2)连线的中点M(x0,y0)在椭圆C内,可用“内点法”.说明:判别式法和内点法,是解决圆锥曲线上存

18、在两点关于直线的对称的一般方法例3.已知抛物线C:y=─x2+mx─1,点A(3,0),B(0,3),若抛物线C与线段AB有两个交点,求m的取值范围.提示:转化为一元二次方程根的分布.例4.过椭圆C:(a>b>0)上一动点P向圆O:x2+y2=b2引两条切线PA、PB,切点分别是A、B,直

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。