资源描述:
《义务教育最新20-13届天津高三数学理科试题精选分类汇编5:数列》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、最新2013届天津高三数学试题精选分类汇编5:数列一、选择题.(天津市十二区县重点中学2013届高三毕业班联考(一)数学(理)试题)已知函数数列满足,且是单调递增数列,则实数的取值范围是( )A.B.C.D..(天津市六校2013届高三第二次联考数学理试题(WORD版))已知等差数列中,a7+a9=16,S11=,则a12的值是( )A.15B.30C.31D.64.(天津南开中学2013届高三第四次月考数学理试卷)数列的前n项和为,则数列的前50项的和为( )A.49B.50C.99D.100.(天津市新华中学2012届高三上学期第二次月考理科数学)已知正项等
2、比数列{a}满足:,若存在两项使得,则的最小值为( )A.B.C.D.不存在.(天津市新华中学2012届高三上学期第二次月考理科数学)等差数列{a}中,如果,,数列{a}前9项的和为( )A.297B.144C.99D.66.(天津市天津一中2013届高三上学期第二次月考数学理试题)若∆ABC的三个内角成等差数列,三边成等比数列,则∆ABC是( )A.直角三角形B.等腰直角三角形C.等边三角形D.钝角三角形.(天津市新华中学2013届高三第三次月考理科数学)已知正项等比数列满足:,若存在两项使得,则的最小值为( )A.B.C.D.不存在.(天津市新华中学201
3、3届高三第三次月考理科数学)设是等差数列{an}的前n项和,,则的值为( )A.B.C.D..(天津耀华中学2013届高三年级第三次月考理科数学试卷)已知等比数列{an}的首项为1,若成等差数列,则数列的前5项和为( )A.B.2C.D.二、填空题.(天津市蓟县二中2013届高三第六次月考数学(理)试题)正项等比数列中,若,则等于______..(天津市新华中学2013届高三寒假复习质量反馈数学(理)试题)某公园设计节日鲜花摆放方案,其中一个花坛由一批花盆堆成六角垛,顶层一个,以下各层均堆成正六边形,且逐层每边增加一个花盆(如图).设第层共有花盆的个数为,则的表达
4、式为_____________________..(天津市新华中学2012届高三上学期第二次月考理科数学)数列{a}中,若a=1,(n≥1),则该数列的通项a=________。.(天津市天津一中2013届高三上学期第二次月考数学理试题)等差数列{an}中,,在等比数列{bn}中,则满足的最小正整数n是____..(天津市新华中学2013届高三第三次月考理科数学)在数列中,,则数列中的最大项是第项。.(天津市新华中学2013届高三第三次月考理科数学)设数列满足,(n∈N﹡),且,则数列的通项公式为..(天津市新华中学2013届高三第三次月考理科数学)若,则..(天津耀
5、华中学2013届高三年级第三次月考理科数学试卷)对于各数互不相等的整数数组(n是不小于3的正整数),若对任意的p,,当时有,则称是该数组的一个“逆序”.一个数组中所有“逆序”的个数称为该数组的“逆序数”,如数组(2,3,1)的逆序数等于2.若数组的逆序数为n,则数组的逆序数为_________;.(天津耀华中学2013届高三年级第三次月考理科数学试卷)设{an}是等比数列,公比,Sn为{an}的前n项和.记,,设为数列{Tn}的最大项,则n0=__________;三、解答题.(天津市蓟县二中2013届高三第六次月考数学(理)试题) 已知A(,),B(,)是函数的图象
6、上的任意两点(可以重合),点M在直线上,且. (1)求+的值及+的值 (2)已知,当时,+++,求; (3)在(2)的条件下,设=,为数列{}的前项和,若存在正整数、,使得不等式成立,求和的值..(天津市蓟县二中2013届高三第六次月考数学(理)试题)设等差数列的首项及公差d都为整数,前n项和为Sn. (1)若,求数列的通项公式; (2)若 求所有可能的数列的通项公式..(天津市十二区县重点中学2013届高三毕业班联考(一)数学(理)试题)设等比数列的前项和为,已知.(Ⅰ)求数列的通项公式;(Ⅱ)在与之间插入个数,使这个数组成公差为的等差数列,设数列的前项和
7、,证明:..(天津市六校2013届高三第二次联考数学理试题(WORD版))已知数列{an}中,a1=1,若2an+1-an=,bn=an-(1)求证:{bn}为等比数列,并求出{an}的通项公式;(2)若Cn=nbn+,且其前n项和为Tn,求证:Tn<3..(天津市新华中学2013届高三寒假复习质量反馈数学(理)试题)已知数列的前项和(为正整数)(Ⅰ)令,求证:数列是等差数列,并求数列的通项公式;(Ⅱ)令,试比较与的大小,并予以证明.(天津南开中学2013届高三第四次月考数学理试卷)已知数列满足,(1)证明:数列是等比数列,并求出的通项公式(2)设